Estudio correlacional del fortalecimiento de las funciones ejecutivas en niños de 6-12 años que asisten a clases de robótica en la Academia Robotic Academy y niños en clases seculares en el Colegio Escuela Nueva de la misma edad mediante la prueba ENFEN, periodo escolar abril-junio 2018.

Sustentado por:

Clara Alicia Mañón Báez 12-0830

Para la obtención del grado:

Licenciatura en Psicología Clínica

Asesora:

Pat Galán Laureano, M.A.

Santo Domingo (D.N.)

R.D.

Septiembre, 2018
Estudio correlacional del fortalecimiento de las funciones ejecutivas en niños de 6-12 años que asisten a clases de robótica y niños en clases seculares de la misma edad mediante la prueba ENFEN, periodo escolar abril-junio 2018.
<table>
<thead>
<tr>
<th>Tabla de contenido</th>
<th>Pags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agradecimientos ... I</td>
<td></td>
</tr>
<tr>
<td>Dedicatorias .. VI</td>
<td></td>
</tr>
<tr>
<td>Resumen Analítico Sistemático ... VII</td>
<td></td>
</tr>
<tr>
<td>Resumen .. VIII</td>
<td></td>
</tr>
<tr>
<td>Introducción .. I</td>
<td></td>
</tr>
<tr>
<td>CAPITULO I – PLANTEAMIENTO DEL PROBLEMA 1</td>
<td></td>
</tr>
<tr>
<td>1.2 Preguntas de Investigación ... 5</td>
<td></td>
</tr>
<tr>
<td>1.3 Objetivos .. 6</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Objetivo General ... 6</td>
<td></td>
</tr>
<tr>
<td>1.3.2. Objetivos específicos .. 6</td>
<td></td>
</tr>
<tr>
<td>1.4. Justificación .. 7</td>
<td></td>
</tr>
<tr>
<td>1.4.1. Personal ... 7</td>
<td></td>
</tr>
<tr>
<td>1.4.2. Psicología Clínica .. 7</td>
<td></td>
</tr>
<tr>
<td>1.4.3. Científico ... 8</td>
<td></td>
</tr>
<tr>
<td>1.4. Alcances y limitaciones ... 10</td>
<td></td>
</tr>
<tr>
<td>CAPITULO II – MARCO TEORICO .. 11</td>
<td></td>
</tr>
<tr>
<td>2.1. Marco Conceptual .. 11</td>
<td></td>
</tr>
</tbody>
</table>
2.2. Antecedentes Históricos sobre el estudio de las funciones ejecutivas

2.3. Investigaciones realizadas sobre el tema objeto de estudio

2.4. Las Funciones Ejecutivas

2.5. Bases Psicofisiológicas de las funciones ejecutivas

2.6. Lóbulo Frontal, las funciones ejecutivas y su relación con los demás lóbulos

2.7. Fisiopatología de las funciones ejecutivas

2.7.1. Evaluación de las Funciones Ejecutivas

2.7.2. Síndrome Disejecutivo

2.7.3. Intervención neuropsicológica del Síndrome Disejecutivo

2.8. Características principales de la población objeto de estudio, según su etapa y áreas de desarrollo

2.8.1 Características de los niños en la segunda infancia

2.8.2. Características de los niños en el inicio de la pubertad y entrada a la adolescencia

2.8.3. Importancia del fortalecimiento de las Funciones Ejecutivas en los niños

2.8. La Robótica

2.8.1. Clasificación de los Robots

2.8.2. La Robótica Educativa
2.8.3. La importancia de la Robótica para la psicología como herramienta de fortalecimiento de las funciones ejecutivas

2.9. Perspectivas Teóricas

2.9.1 Teorías Biológicas y Fisiológicas

2.9.2. Teorías Psicológicas

2.9.3. Teorías sobre la Robótica

2.10. Marco Contextual

2.11. Idea a Defender (Hipótesis)

2.12. Operacionalización de variables

CAPITULO III – DISEÑO METODOLÓGICO

3.2. Metodología

3.3. Técnicas de Recolección de Datos

3.4. Descripción y Validación de los instrumentos

3.4.1 Descripción de la prueba

3.4.2. Propiedades Psicométricas

3.5. Procedimientos

3.6. Universo y Muestra

3.6.1. Criterios de Inclusión
3.6.2. Criterios de Exclusión... 68

3.7. Plan de análisis de los datos .. 68

Capítulo IV – PRESENTACIÓN Y ANÁLISIS DE LOS RESULTADOS 68

4.1. Presentación de la Data Cuantitativa y Cualitativa arrojada por la Investigación 69

Tabla I. Frecuencia de edades por grupos evaluados.. 69

Tabla II. Niveles interpretativos de la prueba ENFEN que marcan valores relevantes en los grupos... 70

Tabla IV. Prueba de normalidad entre ambos grupos. 77

Tabla V. Prueba T. Verificación si existe diferencia significativa. 79

Tabla VI. Prueba Fluidez Fonológica de los participantes evaluados con la ENFEN........ 80

Tabla VIII. Prueba Fluidez Semántica de los participantes evaluados con la ENFEN........ 82

Tabla VIII. Prueba Sendero gris de los participantes del grupo robótica y grupo control evaluado con la ENFEN... 84

Tabla IX. Prueba Sendero a color de los participantes del grupo robótica y grupo control evaluado con la ENFEN... 87

Tabla X. Prueba Anillas de los participantes del grupo robótica y grupo control evaluado con la ENFEN... 89

Tabla XI. Prueba interferencia de los participantes del grupo robótica y grupo control evaluado con la ENFEN... 91
4.2. Análisis de los resultados ... 93

Conclusiones .. 97

Recomendaciones ... 103

Bibliografía .. 105
AGRADECIMIENTOS
Agradecimientos

En primer lugar te agradezco a ti Dios, por ayudarme a terminar mi carrera, gracias por darme las fuerzas y el coraje para hacer de este sueño realidad. Gracias por haberme acompañado y guiado a lo largo de mi carrera, permitiéndome llegar hasta aquí de la mejor manera posible. Gracias por brindarme esta gran oportunidad llena de aprendizajes, experiencias y sobre todo por enseñarme a través de la oración que todo es posible. Prometo poner en práctica todos mis conocimientos adquirido en este tiempo para ayudar al que más lo necesita.

A mi madre: Clara G. Báez Subervi, a ti te debo lo que soy hoy, eres para mí un amor puro y sincero, mi inspiración de todo lo que hago. Gracias por ser el pilar más importante en este proceso y por demostrarme todo tu cariño y apoyo incondicional siempre, por el gran amor y la devoción que tienes para tus hijos, por tener siempre la fortaleza de salir adelante sin importar los obstáculos, de ti aprendí que lo que me proponga puedo lograrlo, que nada es imposible para el que tiene Fe y hace las cosas correctamente. Gracias madre por tu tiempo, por tu dedicación, por la confianza depositada en mí, por tener paciencia en esperar la obtención de este título de grado. Gracias por darme las herramientas necesarias para poder lograr esta meta, por siempre estar dispuesta ayudarme, pero al mismo tiempo enseñándome a como desarrollarme por mí misma. Dios me bendijo con una madre como tú, trabajadora, solidaria, honesta, cariñosa, entregada por completo a tus hijos y familia. Este logro lo comparto contigo. Te amo.

A mi abuela: Mi segunda madre, el tronco de nuestra familia. La que con su sabiduría me ha enseñado a ser una mejor versión para mí. Gracias por tu paciencia, por enseñarme el camino de la vida, gracias por tus consejos, por el amor que me has dado y por tu apoyo incondicional
en mi vida. Gracias por esos libros que me has regalado sobre la vida y tus especiales dedicatorias, he aprendido mucho de ellos. Gracias por llevarme en tus oraciones. Gracias por demostrarme que cuando uno ama lo que hace es más feliz, bendecido y agradecido. Gracias a Dios por ti y por ser la mejor abuela de mi mundo. Te adoro.

A mis hermanos: Héctor Mañón, Marcos Mañón y Gerónimo Pérez, que de una u otra forma son una parte esencial de este logro. Gracias por esta ahí siempre para mí, cuidarme y apoyarme siempre. Gracias Héctor por ser un hermano mayor y demostrarme que si puedo, por empujarme cuando necesitaba arrancar. Gracias Marcos por enseñarme lo bonito y esencial de la vida, con tu corazón tan sincero y puro. Gracias Gerónimo, aun siendo el más pequeño de la casa, es el más sabio e inteligente, gracias por enseñarme a ver a través de tu inocencia lo esencial de la vida. Ustedes saben lo que significa para mí conseguir este logro con ustedes y decirles ¡Si se puede! Los amo.

A mis Tías y Tíos: Ana Aurelia Báez, Magda Báez, Susana Simó, Mercedes Lora, Guillermo Báez, Gedeón Santos y Shad Hay. Gracias por creer en mí, por siempre estar ahí apoyándome y guiándome desde que tengo uso de razón. Sus acciones hablan más de lo que pueda decir. Ustedes representan una gran inspiración en mi vida y un gran ejemplo a seguir. ¡Los quiero mucho!

A mis primos: José Guillermo Santos, Juan Carlos Santos, David Santos, María Amelia y Guillermo José. Más que primos, los considero hermanos. Han estado ahí presentes siempre. Quiero agradecerles en esta ocasión tan especial, por su compromiso para conmigo ¡Los quiero mucho!
A mi novio: Miguel N. Cruz Pimentel. La ayuda que me brindaste fue sumamente importante, estuviste a mi lado apoyándome inclusive en los momentos y situaciones más difíciles. Fuiste la parte motivadora y esperanzadora en este proceso. Con esas acciones me enseñas lo que es amar incondicionalmente a una persona. Gracias por ser la mayor motivación en mi vida encaminada al éxito, fuiste el ingrediente perfecto para poder lograr alcanzar esta meta en mi vida. Poder disfrutar del privilegio de ella con esa persona que aporto sus conocimientos y se preocupó por mí en cada momento es una bendición de Dios, eres un ángel. Gracias por tu tiempo y entrega, has sido mi soporte, apoyo y guía. Gracias por tener paciencia en los momentos difíciles que se nos presentaron en este proceso. Somos un gran equipo!!! Eres mi gran y verdadero amor. Te amo!

A mi segunda familia: Miguel Cruz Then, Arelis Pimentel, Miguel N. Cruz P. y Karla María Cruz P. La segunda familia que me regalo Dios, no puedo estar más agradecida de ustedes. Me han acogido como una hija más, gracias por siempre creer en mí, por siempre hacerme sentir en casa. Gracias por su apoyo incondicional y por regalarme amor sincero. Gracias le doy a Dios por ustedes. Quiero darle un especial agradecimiento a Doña Arelis, gracias por acercarme más a Dios, por sus buenos consejos, por enseñarnos que todo depende de una actitud positiva y por demostrarnos fortaleza aun en los momentos más difíciles, su sonrisa contagia a todo lo que la rodea. Dios la bendiga enormemente. A mi hermana Karla Cruz, sabes lo importante que eres para mí y lo que significas en mi vida, solo puedo decirte gracias por todo y por siempre juntas. Los adoro.
A mis amigas: Diana Martínez, Judit Martínez, Isis Muñoz, Natalia Martínez, Ivanna López, Stephanie Marte, Famelly Del Orbe, Nicole Franco, Magdalena Martínez, Scarleet Bautista, Danielle Vásquez, Leticia Hernández y todas las demás que saben quiénes son. Las amigas son como los libros, no es importante tener muchísimas, es importante tener las mejores, y ustedes sin duda son las mejores que he podido tener. Gracias por siempre estar ahí para mí, apoyándome, ayudándome, aceptar siempre compartir conmigo mis aventuras, gracias por demostrarme cuales son los ángeles terrenales. Quiero darle un especial agradecimiento a Diana Martínez quien ha estado conmigo 19 años de mi vida siempre a mi lado, apostando a mí siempre. Gracias por pertenecer en mi vida y ser una razón más para sonreír.

A la Lic. Adrián T. De Oleo Montero, por ser luz al momento de tomar decisiones, buscando nuestra mejora profesional y personal, gracias por ayudarme a definir mi tema con los mejores consejos.

A mis facilitadores, Pat Galán y Jesús Peña, por su colaboración, orientación y paciencia, el tiempo que habéis dedicado fue muy apreciado, logrando con ellos la excelencia. Estaré enteramente agradecida con ustedes.

Por último, a la Academia de Robótica, Robotic Academy y el Colegio Escuela Nueva, por abrirmos las puertas y permitirnos realizar nuestro estudio en su institución, gracias por disponer los recursos necesarios para que esta investigación sea de modelo en diferentes programas. Dentro de la misma institución, quiero agradecer a los padres que aceptaron la evaluación, en búsqueda de mejorías en la calidad de vida de sus hijos. Al Sr. Héctor Jacinto Mañón, Director de la escuela de robótica, gracias por apoyarnos a realizar este trabajo en beneficio en el fortalecimiento de las funciones ejecutivas. Además, agradezco a la Lic. Karina Abreu, por disponer de su tiempo.
DEDICATORIAS
Dedicatorias

Dedico este trabajo principalmente a Dios, por haberme permitido llegar hasta este momento tan importante en mi formación personal.

A mi madre, por ser el pilar más importante en mi vida y por demostrarle siempre su dedicación, cariño, amor, comprensión y apoyo incondicional. Mi súper mama, comparto este logro contigo. Te amo.

A mi abuela, a quien quiero como una madre, gracias por compartir momentos significativos contigo y por siempre estar dispuesta a escucharme y ayudarme en cualquier momento.

A mis hermanos, mis ángeles terrenales. Los amo.

A mi novio, este proyecto no hubiese sido lo mismo sin ti. Te adoro.

A mi familia, amigos y a todas las personas que me apoyaron en la trayectoria de mi carrera y que de alguna manera me motivaron a seguir.

A la Universidad Pedro Henríquez Ureña (UNPHU). Gran institución donde he tenido la oportunidad de aprender, encontrar nuevas personas, hacer nuevos amigos, descubrir la inmensidad de los conocimientos, encontrando tremendo maestros que me guiaron en mi camino y enseñaron a ser mejor profesional.

Clara Alicia Mañón Báez
Resumen Analítico Sistemático
Resumen

Es una investigación cuyo principal objetivo es correlacionar el fortalecimiento delas funciones ejecutivas en niños de 6-12 años que asisten a clases de robótica y niños en clases seculares de la misma edad mediante la prueba ENFEN, periodo escolar abril-junio 2018. La población objeto de estudio son varones que han estado en clases de robótica y niños no han asistido a dicha clase. La metodología empleada exploratorio, descriptivo, explicativo y transversal, no experimental de tipo casos y controles, describiendo todos los aspectos de las funciones ejecutivas en los niños, la historia, los antecedes sobre las funciones ejecutivas y la robótica, las posiciones teóricas. La muestra fue recogida de forma aleatoria, se suministró el consentimiento informado a los padres, y una evaluación neuropsicológicas de las funciones ejecutivas en niños (ENFEN). Se trabajó con un universo de 100 niños, y luego con una muestra representativa de 38 niños. Seleccionando a 18 niños de la escuela de robótica y 20 niños del colegio escuela nueva. Los indicadores de fortalecimiento de las funciones ejecutivas que se identificaron en los grupos, el grupo de robótica obtuvo una mayor puntuación en todas las pruebas de un 37.7% mientras el otro grupo que no está en robótica obtuvo en todas las pruebas un 32.4%. La prueba de las anillas la de mayor relevancia a nivel de porcentaje obteniendo un 7.3% otorgándole en la descripción ENFEN como medio alto y al otro grupo un 5.1%. Solo se puede ver en la evaluación que más se destacan ambos grupos es sendero gris, obteniendo el grupo de robótica un 7.0% y el grupo control un 6.8% dado que es similar a tareas que normalmente los niños realizan en su trayectoria escolar existiendo un aprendizaje previo que podría favorecer el resultado. Siendo las características de esta prueba: flexibilidad mental, memoria de trabajo, coordinación visomotora, capacidad para programar la conducta, habilidad para desarrollar y mantener solución a nuevos problemas, capacidad de abstracción y capacidad
de planificación. Concluimos que la robótica estimula al fortalecimiento en el área cognitiva específicamente en las funciones ejecutivas.

Palabras Claves: Fortalecimiento, Funciones Ejecutivas, Robótica, Pubertad, ENFEN, Anillas.

Summary

It is an investigation whose main objective is to correlate the strengthening of executive functions in children of 6-12 years old who attend robotics classes and children in secular classes of the same age through the ENFEN test, school period April-June 2018. The target population of study are males who have been in robotics classes and children have not attended that class. The methodology used exploratory, descriptive, explanatory and cross-sectional, non-experimental cases and controls, describing all aspects of executive functions in children, history, antecedents on executive functions and robotics, theoretical positions. The sample was collected randomly, informed consent was provided to the parents, and a neuropsychological evaluation of the executive functions in children (ENFEN). We worked with a universe of 100 children, and then with a representative sample of 38 children. Selecting 18 children from the robotics school and 20 children from the new school. The indicators of strengthening of the executive functions that were identified in the groups, the robotics group obtained a higher score in all the tests of 37.7% while the other group that is not in robotics obtained in all the tests a 32.4%. The test of the rings is the most relevant at the percentage level, obtaining 7.3%, giving it in the description ENFEN as a high medium and the other group 5.1%. You can only see in the evaluation that most stand out both groups is gray trail, obtaining the robotics group by 7.0% and the control group by 6.8% given that it is similar to tasks that children normally perform in their school trajectory. Previous that could favor the result. The characteristics of this test are: mental
flexibility, working memory, visual motor coordination, and ability to program behavior, ability to develop and maintain solutions to new problems, capacity for abstraction and planning capacity. We conclude that robotics stimulates strengthening in the cognitive area specifically in executive functions.

Key Words: Strengthening, Executive Functions, Robotics, ENFEN, Puberty, Rings.
Introducción

El cerebro humano es una máquina perfecta en el cuerpo humano, es quien nos maneja y nos controla. Más allá de su complejidad, él es un órgano que resulta fascinante porque a pesar de su tamaño, tan pequeño, en relación con el resto del cuerpo, goza de absoluta ‘inteligencia’, pues por él deben pasar desde emociones, hasta movimientos y habilidades propias de todos los seres humanos.

El desarrollo de las ciencias cognitivas especialmente en la neuropsicología, han evolucionado a pasos desmesurados bajo el influjo de los modelos teóricos provenientes de la psicología cognitiva, pero también por el avance de nuevos y sofisticados métodos que permiten estudiar la actividad cerebral durante los procesos cognitivos, como es la neurociencia. (Medina, 2008).

Dichos avances han ido develando la importancia que tienen el fortalecimiento del lóbulo frontal en el ser humano el cual su estimulación le permite la mejora de habilidades para un mejor comportamiento eficaz. (Medina, 2008).

Esta región cerebral, como estructura, se halla implicada en la ejecución de operaciones cognitivas específicas, tales como memorización, metacognición, aprendizaje y razonamiento, estos procesos son conocidos con el nombre de funciones ejecutivas.

Las funciones ejecutivas se han definido como los procesos que asocian ideas, movimientos y acciones simples y los orientan a la resolución de conductas complejas (Puente, 2013). Las mismas forman el núcleo de la actividad mental, especialmente cuando se trata de
resolver nuevos problemas que requieren la puesta en marcha de procesos de razonamiento, abstracción, permitiendo la resolución de nuevos problemas especialmente aquellos de mayor complejidad.

Fortalecer las funciones ejecutivas desde el 1er año de vida, es de suma importancia ya que ayudan a evitar alteraciones de las mismas. En este sentido contar con nuevas herramientas de enseñanza como es la robótica que puedan fortalecer las funciones ejecutivas, sería un gran aporte a la neuropsicología, a la psicología clínica y escolar.

La revista académica trimestral llamada Parentig Science, en un escrito por Marc Bornstein, se explica a través de diversas investigaciones desde la perspectiva de la psicología, la evolución y la neurociencia cognitiva. Como el proceso de armar con bloques tiene múltiples beneficios entre los que se encuentran: razonamiento espacial, flexibilidad cognitiva, habilidades lingüísticas, capacidad de pensamiento creativo entre otras. (Dewar, 2018).

En el caso de los niños de 6-12 años se hace relevante usar estrategias de enseñanza que estimulen y fortalezcan estas funciones. En cuanto a las etapas del desarrollo según Jean Piaget y la importancia en cada etapa del fortalecimiento de las funciones ejecutivas, se puede especificar los siguientes hitos: (Papalia, 2009)

- 6 años: El niño comienza a crear el pensamiento intuitivo.
- 7-11 años: Periodo de las operaciones concretas. El niño, a partir de este momento, es capaz de realizar operaciones que tienen relación directa con los objetos y a continuación aprenderá a resolver operaciones de manera abstracta.
11-15 años: Período de las operaciones formales. Los niños en este periodo se hacen capaces de explorar soluciones lógicas para conceptos tanto abstractos como concretos, de pensar sistemáticamente en todas las posibilidades de un problema, de proyectar hacia el futuro o rememorar el pasado y de razonar a través de analogías, comparaciones y metáforas.

La importancia del fortalecimiento de las funciones ejecutivas en estas etapas es fundamental, observándose tres picos intensos de activación entre los 4 y 8 años, los 9 y 12 años y posteriormente, entre los 15 y 19 años.

En lo referente al segundo punto de importancia en la investigación la robótica es una ciencia o rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas realizadas por el ser humano que requieren del uso de inteligencia. Las ciencias y tecnologías de las que deriva podrían ser: álgebra, la mecánica o la informática (Matías Romero Costas, 2012).

A través de la robótica, es posible apoyar los procesos de enseñanza y aprendizaje de la comunidad neuropsicológica y académica, con herramientas tecnológicas más adaptadas a los estudiantes.

Mediante esta disciplina, los niños se involucran en su propio proceso de aprendizaje, a la par que potencian sus habilidades en áreas como las ciencias, tecnología, ingeniería y matemáticas. Los aportes de la robótica son innumerables, desde un punto de vista de competencias la robótica ayuda al desarrollo de una multitud de capacidades, se menciona más adelante. (Dewar, 2018).
Según Isaac Asimov (1942), la robótica educativa apoya y fortalece “áreas específicas del conocimiento” y desarrolla competencias “a través de la concepción, creación, ensamble y puesta en funcionamiento de robots.” Desde el punto de vista neuropsicológico mejora la agilidad mental y la capacidad de razonar. La memoria y la retención también se potencian durante el proceso de creación del robot, también la visión espacial y la capacidad verbal también se desarrollan durante el proyecto, al ser necesarias para configurar al robot de movimiento y habla. (Mendoza, 2012).

En ese tenor esta investigación pretende aportar desde un punto de vista psicofisiológico y neuropsicológico como influye la robótica en el fortalecimiento de las funciones ejecutivas, como a la vez estas ayudan al crecimiento y la disciplina de niños, niñas y adolescentes y a la memoria de la ejecución de las más importantes actividades diarias, así como también un fortalecimiento del plano emocional y psicológico, mejorando por ende el comportamiento.

El siguiente trabajo de investigación fue desglosado en diferentes capítulos. El capítulo I se desarrolla la descripción del problema, preguntas de investigación, objetivo, justificación personal, profesional y científica, los alcances y limitaciones de la investigación. En el Capítulo II vemos diferentes conceptos inherentes al tema para su mejor entendimiento.

Se conceptualizó las bases psicofisiológicas de las funciones ejecutivas como también los lóbulos cerebrales y su relación con las funciones ejecutivas.

Se conoció la fisiopatología de las funciones ejecutivas como también el Síndrome Disejecutivo y las intervenciones neuropsicológicas del mismo. Se explica las etapas del desarrollo y las características de los niños en la segunda infancia, características de los niños de la pubertad y entrada de la adolescencia.
También se aborda el tema alrededor de la importancia del fortalecimiento de las funciones ejecutivas en lo que respecta a la robótica y sus calificaciones la relevancia de esta para el fortalecimiento de las funciones ejecutivas. Así mismo incluye las perspectivas teóricas. Finalizando con la presentación de los diferentes contextos donde fue realizada la investigación. La Academia de Robótica y del Colegio Escuela Nueva, haciendo referencia a su historia, misión, visión, valores, y servicios que ofrece.

Capítulo III comprende el Diseño Metodológico donde se plantea el tipo de método de investigación, así como la descripción y validación de los instrumentos, descripción de la prueba, propiedades psicométricas, procedimientos, universo y muestra, los criterios de inclusión y exclusión, y, por último, el plan de análisis de los datos.

Finalmente, el Capítulo IV contiene de la presentación y análisis de los resultados dando respuesta las preguntas de investigación que surgieron al inicio de la investigación, así como de las conclusiones que se generaron con la misma y sus posibles recomendaciones.
CAPÍTULO I – PLANTEAMIENTO DEL PROBLEMA

1.1. DESCRIPCIÓN DEL PROBLEMA

Desde el 1966 se ha venido investigando y tomando en consideración la importancia que tienen las funciones ejecutivas en nuestro cerebro, específicamente en el lóbulo frontal. Comenzando con Alexander Luria que fue el primero en hablar de ellas en su libro “Higher Cortical Functions in Man”, para luego ser escogido por Muriel Lezak en 1982 quien lo describió como el conjunto de actividades cognitivas que favorecen llevar a cabo un plan coherente dirigido hacia el logro de una meta específica (Clark, 2017).

Goldberg, discípulo de Luria define a las funciones ejecutivas como “Director de Orquesta”. Estas funciones son las encargadas de recibir información del resto de estructuras cerebrales coordinándolas entre sí para realizar conductas proposicionales o dirigidas a un fin. Es decir, son quien dirige y supervisa al resto del cerebro. Gracias a las funciones ejecutivas podemos diferenciarnos de otras especies animales, que reaccionan de manera automática a los estímulos ambientales presentes (Bravo Sánchez, 2012).

La importancia del fortalecimiento de las funciones ejecutivas es de gran valor, en el contexto social de nuestros días, debido a que la demanda de planificar tareas, generar iniciativas, desarrollar y finalizar las acciones, inhibir conductas automáticas, supervisar, cambiar los planes y controlar el tiempo que nos exige la sociedad cada vez es mayor.

Es por esto que un entrenamiento y estimulación adecuados que permitan el dominio de estas funciones ejecutivas resulta esencial para el buen funcionamiento, social, académico y personal de los niños, niñas y adolescentes. Permitiéndoles alcanzar sus metas en la vida adulta, al tratarse de funciones que los prepararan para planificar, anticipar y reajustarse constantemente.
A través de los siglos la humanidad ha producido avances significativos en el desarrollo de nuevas tecnologías generándose también una mejor calidad de vida en los habitantes del planeta.

Estos avances en la humanidad han sido posible gracias al proceso educativo que han llevado las sociedades, sin embargo la evolución creada por este mismo proceso educativo ha generado espacios donde la población infantil, juvenil y adultos es impactada con una miríada de cambios en diversas áreas tales como: la educación, la automatización industrial, la competitividad laboral, entre otros.

La aparición de la robótica hacia 1960, surgió para producir un impacto en los procesos emocionales y conductuales de aprendizaje del ser humano sirviendo como material de apoyo para las neurociencias, lo que ha dado origen a lo que se conoce como “ingeniería educativa”, la cual tiene como propósito encontrar nuevo enfoques didácticos usando componentes tecnológicos, haciendo de los desarrollos modernos, no solo el espacio para las aplicaciones que mejoran la calidad de vida de las personas, sino también en un espacio para la reflexión y la construcción de conocimiento (Bravo Sánchez, 2012).

En la actualidad se observa que las nuevas generaciones nacen y se desarrollan inmersas en un mundo orientado al uso de la tecnológico donde en la mayoría de los casos los métodos de enseñanza tradicional no les resultan atractivos, pese a ser estos mismos métodos los que han llevado al desarrollo tecnológico del contexto actual.

El desinterés mostrado por los métodos tradicionales de enseñanza no debe verse como un fracaso del sistema educativo sino como parte de su evolución y como consecuencia del conocimiento generado en épocas anteriores por este mismo método, pero es propicio que para continuar el desarrollo educativo de la humanidad las nuevas generaciones se sientan atraídas e
incluidas por métodos que al mismo tiempo no dejen de lado el cumplimiento de los objetivos que los métodos tradicionales lograban alcanzar.

Debido a lo anterior se entiende que, se debe recurrir a nuevas estrategias que integren las tecnologías de la información y de la comunicación (TICs) en los procesos de intervención neuropsicológica.

En este sentido, la ingeniería educativa busca aplicar estrategias innovadoras que inquieten, enfoquen y motiven a la persona, generando la construcción de conocimiento en el estudiante desde un proceso propio, donde a través de las TICs el estudiante genera aprendizaje y razonamiento lógico que le ayudaran a comprender procesos más complejos de la moderna sociedad actual (Ortí, 2000).

En el caso de las funciones ejecutivas el impacto que produce este tipo de estrategias de enseñanza en el proceso de atención, memoria y aprendizaje se ha visto evidenciado en otros estudios internacionales de población infantil y adulta. (Olmedo-Moreno, 2017).

Las funciones ejecutivas se definen como un conjunto de procesos responsables de dirigir, guiar y controlar las funciones cognitivas, emocionales y conductuales, especialmente en aquellos momentos en los que es necesaria una solución de problemas y toma de decisiones activa por parte de la persona (Olmedo-Moreno, 2017). Son especialmente necesarias para el desempeño óptimo de las actividades de la vida diaria tales como: toma de decisiones, control de nuestro comportamiento, planificación, organización, resolución de problemas, manipulación de datos, autorregular las emociones, la motivación, así como la habilidad para solucionar problemas.

Es de suma importancia conocer las implicaciones cognoscitivas de las nuevas tecnologías aplicadas a nivel educativo, como puede verse en la figura 1, las causas que originaron la
adaptación de la robótica en el marco de la generación de conocimientos pueden tener consecuencias deseadas y no deseadas, visto esto la presente investigación surge con la motivación de conocer los efectos neuropsicológicos de esta estrategia de enseñanza.

Figura 1. Árbol del problema
1.2 Preguntas de Investigación

1. ¿Cuáles indicadores de fortalecimiento de las funciones ejecutivas se identifican en la correlación de los grupos de niños de 6-12 años que asisten a clase de robótica y niños en clases seculares de la misma edad mediante la prueba ENFEN, periodo escolar Abril-Junio 2018?

2. ¿Establecer los niveles interpretativos de la prueba ENFEN marcan valores relevantes en los grupos de estudiantes?

3. ¿Desglosar características se manifiestan en los niveles interpretativos de la prueba ENFEN que se identificaron con valores más elevados en los grupos de estudios?

4. ¿Identificar las técnicas de abordaje neuropsicológicas caracterizan un programa de fortalecimiento de las funciones ejecutivas según los resultados arrojados por los grupos de estudio mediante la prueba ENFEN?
1.3 Objetivos

1.3.1 Objetivo General

Identificar de forma correlacional cuales son los indicadores de fortalecimiento de las funciones ejecutivas en niños de 6-12 años que asisten a clases de robótica y niños en clases seculares de la misma edad mediante la prueba ENFEN, periodo escolar abril-junio 2018.

1.3.2. Objetivos específicos

2. Estratificar los niveles interpretativos de la prueba ENFEN marcan valores relevantes en los grupos de estudiantes.

3. Reconocer las características se manifiestan en los niveles interpretativos de la prueba ENFEN que se identificaron con valores relevantes en los grupos de estudios.

4. Determinar cuáles técnicas de abordaje neuropsicológicas caracterizan un programa de fortalecimiento de las funciones ejecutivas según los resultados arrojados por los grupos de estudio mediante la prueba ENFEN.
1.4. Justificación

1.4.1. Personal

El interés al realizar esta investigación nació de una motivación intrínseca personal, ya que hemos tenido la oportunidad de trabajar en esta área de la robótica educativa como cooperadores en el programa de clases y asistente en algunas secciones, poniendo en práctica nuestros conocimientos psicológicos.

La posibilidad de poder aportar al área de la psicología clínica, neuropsicología y psicología escolar nos llena de mucha satisfacción personal y profesional ya que hoy en día la robótica ha revolucionado muchas áreas de las neurociencias.

Siendo este, por lo tanto, uno de los temas interdisciplinarios mas hablados en los últimos tiempos, entorno a la relación tan significativa que ha mantenido la robótica con la psicología.

1.4.2. Psicología Clínica

Como se menciona antes la robótica ha venido haciendo aportes significativos a muchas ramas de la neurociencia, siendo la ingeniería mecánica fundamental para la creación de la misma. Los ingenieros que se dedican a la robótica combinan lo que es la mecánica, electrónica, informática, inteligencia artificial, la ingeniera de control, y la física para lograr resultados cada vez más significativos. Sin embargo, una de las ramas con mayor popularidad en estos tiempos es la relación que tienen la psicología y la robótica, los aportes que se dan mutuamente son muchos.

La robótica fortalece la capacidad de control de la conducta favoreciendo un estilo de respuesta más reflexiva, elaborada y adecuada a la situación. Las funciones ejecutivas son el
resultado de un proceso cerebral que nos ayuda en la toma de decisiones, la robótica interviene en la capacidad de organización y planificación de las conductas, implementando y evaluando sus propias respuestas de tal forma que las personas sean capaces de establecer objetivos, trazar planes para lograrlos, y supervisarlos mientras lo está poniendo en práctica, para corregir sus errores.

Así mismo, Mejora la resistencia a la interferencia, es decir, ser capaz de disociar los estímulos relevantes de los no relevantes consiguiendo la inhibición de información interferente. Es por ello que este estudio aporta a nuevos recursos al proceso de evaluación y abordaje en la psicología clínica.

1.4.3. Científico

Desde el punto de vista del enfoque de las neurociencias forma parte de las tecnologías actuales, y ha sido el panorama científico la fuente principal de su desarrollo. En el ámbito educativo se ha desarrollado de acuerdo a los principios derivados de las teorías del desarrollo cognitivo de Jean Piaget, revisada en su momento por el matemático y psicólogo Seymour Papert. Este autor, quien desarrolló dentro del constructivismo una corriente denominada Construccionismo, fue discípulo de Piaget en el Centro Internacional de Epistemología Genética de Ginebra y orientó su metodología a la creación de contextos de aprendizaje donde el computador tuviese un rol relevante para que los niños pudiesen comprender de manera natural cualquier materia de la enseñanza formal.

El construccionismo sitúa en el centro de todo proceso de aprendizaje a quien aprende, otorgándole un rol totalmente activo, ampliando su conocimiento a través de la manipulación y la construcción de objetos (Gonzalez, 2011). Papert recoge de Piaget el modelo que concibe al
niño como constructor de sus propias estructuras intelectuales, donde el material requerido para establecer estas organizaciones es proporcionado por la cultura circundante. Afirma que el mejor modo de lograr lo anterior es mediante la construcción de alguna cosa, apoyándose en la tecnología (Ruiz-Velasco, Tecnologías de la información, 2014).

El surgimiento de las neurociencias cognitivas ha generado un creciente interés por comprender las funciones y los sustratos neurales de las denominadas funciones cognitivas de alto nivel. En las dos últimas décadas, la neurología conductual y la neuropsicología han evolucionado a pasos agigantados bajo el influjo de los modelos teóricos provenientes de la psicología cognitiva, pero también por el avance de nuevos y sofisticados métodos que permiten estudiar la actividad cerebral durante los procesos cognitivos. Durante muchos años se ha postulado que el lóbulo frontal está implicado en la secuenciación de los actos motores requeridos para ejecutar eficazmente una acción (Benson, 2005).

El aporte que este estudio hace al plano científico es la utilización de la robótica para motivar e incentivar el interés por el estudio de la ciencia, la tecnología y al mismo tiempo aportar diferentes formas de abordaje asertivos desde el punto de vista neuropsicológico. Se pretende resaltar la importancia del fortalecimiento de las funciones ejecutivas y como el uso de la robótica influye en ellas para ayudar a encontrar respuestas que nos permitan resolver problemas internos (Síndrome disejecutivo) y externos (Conductuales). Los problemas internos son el resultado de la representación mental de actividades creativas y conflictos de interacción social, comunicativos, afectivos y motivacionales nuevos y repetidos. Los problemas externos son el resultado de la relación entre el individuo y su entorno.
1.4 Alcances y limitaciones

La investigación abarca dos centros localizado en el Distrito Nacional, en la República Dominicana. Los individuos que son incluidos en esta investigación, son estudiantes de clases vespertinas de una escuela de robótica educativa, llamada Robotic Academia y un grupo de la misma edad en clases seculares en el Colegio Escuela Nueva ambas localizadas en el Distrito Nacional, Santo Domingo, República Dominicana.

El acceso a ambas instituciones es un logro que permitió tener a la mano ambas poblaciones sin grandes dificultades. Por otro lado, la investigación presento limitación en la búsqueda de información, ya que existe poca información sobre la relación de robótica y funciones ejecutivas, tampoco se encontraron investigaciones previas en contexto nacional e internacional que allanaran el camino en la construcción del presente estudio.
CAPITULO II – MARCO TEORICO

2.1. Marco Conceptual

Funciones Ejecutivas

Las Funciones Ejecutivas son la esencia de nuestra conducta, son la base de los procesos cognitivos y constituyen el elemento con mayor valor diferencial entre el ser humano y las restantes especies (J.A.Portellano, 2011).

Robótica Educativa

La robótica en el ámbito educativo se convierte en un recurso para facilitar el aprendizaje y desarrollar competencias generales como la socialización, la creatividad y la iniciativa, que permitan al estudiante dar una respuesta eficiente a los entornos cambiantes del mundo actual (Mar, 2006).

Memoria de Trabajo

Es una modalidad de memoria a corto plazo que actúa como un sistema que provee almacenamiento temporal de la información, permitiéndonos el aprendizaje de nuevas tareas. La realización de tareas duales esta supervisada por la memoria de trabajo y depende especialmente de las áreas dorso laterales (J.A.Portellano R. M., 2011).

Inhibición

Kagan, Reznick y Snidman, (1998) afirma que la inhibición conductual como la tendencia temperamental caracterizada por la presencia de marcados comportamientos de miedo y retraimiento ante estímulos o situaciones novedosas o ante personas desconocidas.
Supervisión de sí mismo

Informa el grado de conocimiento o consistencia que tiene la persona acerca del impacto de su conducta en otras personas y sus consecuencias. De igual manera, se refiere a la capacidad para poder observar y evaluar como vivencian otras personas su conducta, para supervisar y controlar el impacto que está teniendo en los demás (Gioia, 2017).

Flexibilidad Mental

Es un atributo funcional imprescindible, ya que permite adaptar las respuestas a las nuevas contingencias o estímulos, generando nuevos patrones de conducta o realizando una adecuada inhibición de las respuestas que resultan inadecuadas (J.A.Portellano R. M., 2011).

Control emocional

Aborda la expresión o manifestación de las funciones ejecutivas dentro de la esfera emocional, evaluando la presencia de dificultades para modular sus respuestas emocionales (Gioia, 2017).

Iniciativa

Evalúa la presencia de problemas para iniciar tareas o actividades de forma autónoma e independiente o para generar nuevas ideas, respuestas o estrategias de resolución de problemas (Gioia, 2017).

Regulación Atencional

Es el sensor de las Funciones Ejecutivas, ya que la atención voluntaria permite que se puedan llevar a cabo todos los procesos cognitivos. La atención es la puerta de entrada de la cognición, siendo el área prefrontal el final de trayecto de los procesos atencionales que se inician en la formación reticular mesencefálica. (J.A.Portellano R. M., 2011).
Planificación y organización

Evalúa si la persona tiene problemas para ordenar y priorizar la información, para plantear objetivos y para secuenciar los pasos necesarios para lograrlos. Refleja en qué grado la persona tiene problemas para manejar demandas de tareas de tareas tanto actúa tanto actuales como enfocadas en el futuro. (Gioia, 2017).

Supervisión de la tarea

Evalúa el grado en que la persona evaluada tiene dificultades para detectar pequeños errores en los trabajos o tareas que realiza como, por ejemplo, la omisión de los símbolos aritméticos en tareas de matemáticas, omisión de errores ortográficos en tareas de lengua o una falta de atención general hacia los detalles. (Gioia, 2017).

Organización de materiales

Evalúa la presencia de problemas para mantener de forma ordenada y organizada su zona de estudio, trabajo o juego y sus cosas. (Gioia, 2017).

Síndrome Disejecutivo

Es un conjunto de alteraciones de tipología y gravedad diversas que se dan como consecuencia de la existencia de lesiones en el lóbulo frontal y especialmente en el área prefrontal. Pueden provocar alteraciones en otros aspectos como la comunicación o la personalidad (J.A.Portellano, 2011).
2.2. Antecedentes Históricos sobre el estudio de las funciones ejecutivas

El recorrido histórico de las funciones ejecutivas se inicia con Luria, el antecesor directo de este concepto, el cual aborda el estudio de esta terminología desde 1966 (Ardila, A. 2008), luego Baddeley en 1986 habla del síndrome disexecutivo creando un paradigma sobre el estudio de las funciones ejecutivas a partir de la descripción y análisis de casos de patologías de la zona frontal. A partir de este paradigma se reconoce al término funciones ejecutivas propias del siglo XX, pero no sin antes reconocer los aportes de Harlow (1868 citado en Ardila y Rosselli, 2007), Feuchtwanger (1923 citado en Ardila, 2008), Goldstein (1944 citado en Ardila, 2008).

Harlow, (1868 citado en Ardila y Rosselli, 2007) inicia el contexto histórico de las funciones ejecutivas describiendo el caso histórico de Phineas Gage, como un ejemplo de las disfunciones ejecutivas y patologías del lóbulo frontal. Phineas Gage era un capataz que trabajaba en las vías férreas y sufrió un grave accidente al introducirle una barra de metal en el lóbulo frontal, después de este grave accidente, Gage no volvió a ser el mismo, presentó cambios en su personalidad se empezó a comportarse de forma irascible e irresponsable.

Posteriormente se comprobó que en este caso presentó síntomas cognitivos –emocionales, los cognitivos no pudieron documentarse por falta e instrumento requeridos en la época. Otras investigaciones que enriquecieron la conceptualización de funciones ejecutivas a finales del siglo XIX y principio el XX, fueron la documentación de las patologías de los trastornos de la zona frontal apareciendo el “Síndrome de lóbulo frontal” caracterizado por Feuchtwanger (1923 citado en Ardila y Rosselli, 2007), También este autor relacionó las patologías frontales con conductas que afectaban la memoria, o déficits sensoriomotores, cambios de personalidad, trastornos en la motivación, en la regulación afectiva y en la capacidad para regular e integrar
otras conductas. Posteriormente Goldstein (1944), incluyo la abstracción, iniciación y flexibilidad mental como capacidades del lóbulo frontal. Por último, las funciones ejecutivas no se refieren exclusivamente al control cognitivo, sino también al control y a la regulación de las respuestas emocionales y conductuales.

2.3. Investigaciones realizadas sobre el tema objeto de estudio

Dentro de la exhaustiva búsqueda de información sobre el tema de estudio, no encontramos investigaciones exactamente relacionado al mismo. Pero se hayan investigaciones de la efectividad de la Robótica en niños con Trastorno del Espectro del autismo de Grado I. (Báez, 2018). También se encuentra desarrollo de las funciones ejecutivas a través de video juegos en la atención de la diversidad. En otro reglón el uso de la robótica como herramienta en los procesos de enseñanza. (Rodriguez, Desarrollo de las funciones ejecutivas a través de videojuegos en la atención a la diversidad, 2015).

En esta época existen avances tecnológicos muy importantes, razón por la cual también se han dado avances en las formas de terapia utilizadas para intervenir con personas con TEA. En años recientes se ha implementado el uso de robots como parte de la terapia en niños con TEA, ya que mantiene la atención de los niños y los involucran en las actividades. Uno de estos robots es Milo, el cual tiene como objetivo enseñar de una forma interactiva las emociones, conversaciones y comportamientos en situaciones sociales, mejorar el vocabulario, expresar empatía, autorregularse y automotivarse. (Báez, 2018).

El estudio del impacto de las TIC sobre nuestros niños y jóvenes se ha convertido así un tema de gran interés para el mundo científico. Entre estas tecnológicas, los videos juegos han sustituido en gran medida a los juguetes tradicionales. Los niños y adolescentes (y también muchos adultos) pasan buena parte de su tiempo sentados enfrente de televisores, ordenadores y
tablets, jugando y comunicándose con otros (”reales” y “virtuales”) en partidas multijugador, buscando guías u observando videos que resulten útiles para superar distintos juegos o compartiendo online las dudas y puntuaciones alcanzadas. Por lo tanto, la presencia en la sociedad actual de los videojuegos no puede ser obviada. (Rodríguez, 2015).

Las asignaturas de Robótica es la aplicación del paradigma de Educación STEM en combinación con el Método de Proyecto-Construcción. Esto implica un aprendizaje orientado a la resolución de problemas, a través de la Ingeniería para generar un producto tecnológico tangible, integrando conocimientos multidisciplinarios de Ciencia y Tecnología. (Gabriel Rebollo, 2015).

Se plantea la robótica educativa como una alternativa didáctica, que de forma paralela a los métodos ya establecidos, propende por nuevos enfoques que promuevan en los educandos intereses que coadyuven en la creación de ambientes para el aprendizaje en el que los estudiantes encuentren circunstancias favorables para la construcción de conceptos y de su interpretación personal de la realidad. (Salamanca, 2010).

2.4. Las Funciones Ejecutivas

Los estudios acerca de las funciones ejecutivas muestran importantes hallazgos tales como la inexistencia de una definición de consenso y el surgimiento de un número amplio de modelos. No existe una definición única de las funciones ejecutivas; por el contrario, surge una conceptualización diferente casi con cada modelo que se propone dificultades (Sandoval, 2017).

El termino funciones ejecutivas se ha utilizado para referirse a un conjunto de actividades cognitivas que facilitan mantener un plan coherente y consistente al individuo, el cual permite el logro de metas específicas. Dentro de estas funciones se incluyen la planeación, el control de impulsos, la organización, la flexibilidad de pensamiento, y el autocontrol del comportamiento.
Las funciones ejecutivas siguen una estructura jerárquica (Rebollo y Montiel, 2006), y según su ubicación, son centros de activación importante de la acción cognitiva. A continuación, se resume algunos de los procesos ejecutivos que aparecen en el manual ENFEN (Portellano, 2009).

Tabla 2. Principales procesos cognitivos incluidos en las FE.

<table>
<thead>
<tr>
<th>Memoria prospectiva</th>
<th>Inteligencia fluida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memoria operativa</td>
<td>Formación de nuevos conceptos</td>
</tr>
<tr>
<td>Metacognicion</td>
<td>Abstracción</td>
</tr>
<tr>
<td>Motivación</td>
<td>Razonamiento</td>
</tr>
<tr>
<td>Fluidez Verbal</td>
<td>Pensamiento divergente</td>
</tr>
<tr>
<td>Regulación Emocional</td>
<td>Creatividad</td>
</tr>
<tr>
<td>Empatía</td>
<td>Regulación atencional</td>
</tr>
<tr>
<td>Autoconciencia</td>
<td>Flexibilidad mental</td>
</tr>
<tr>
<td>Comportamiento ético</td>
<td>Memoria del contexto</td>
</tr>
</tbody>
</table>

Nuestro cerebro debe poner en juego las habilidades que configuran las funciones ejecutivas antes actividades nuevas, en este momento, se activa más la región dorsolateral del área prefrontal (Portellano, 2009). En cambio dicha activación disminuye cuando la tarea se aprende o sistemiza.
2.5. Bases Psicofisiológicas de las funciones ejecutivas

Las funciones ejecutivas están localizadas en el lóbulo frontal, a su vez el lóbulo frontal está conectado, de manera recíproca, con las cortezas temporal, parietal y occipital, así como también con estructuras del sistema límbico, como el hipocampo y la amígdala; participan activamente en los procesos de aprendizaje y memoria, tono afectivo y emocional, regulación autonómica, impulsos y motivaciones. (Rojas, 2017).

"El cerebro humano y la médula espinal constituyen el Sistema Nervioso Central gobernando la funcionalidad del resto de nuestro organismo, pudiera decirse que es como la locomotora del resto del tren. En él hay representación de cada función controlando las capacidades de pensar, ver, sentir, moverse, escuchar, oler, entre otras, mediante la interpretación de estímulos externos", así lo describe César Augusto Franco Ruiz, neurólogo del Instituto Neurológico de Colombia.

Dicho lo anterior el lóbulo frontal es uno de los cinco lóbulos de la corteza cerebral y constituye una región grande, donde en ella se encuentra también las funciones ejecutivas, las cuales desempeñan la integración de la información, permitiendo la elección de objetivos y la organización de los planes de acción para realizarlos. Dentro del lóbulo frontal se encuentran la corteza dorsolateral, cingulada y orbitaria.

El área dorsolateral se localiza en la zona rostral externa del lóbulo frontal. Se especializa en las siguientes funciones: memoria operativa, organización temporal del comportamiento, razonamiento, formación de conceptos, generación de acciones voluntarias y flexibilidad mental. La realización de actividades duales de manera simultánea tiene mayor dificultad y activa las áreas dorsolaterales de un modo más intenso. El área dorsolateral es la zona de la corteza
prefrontal que más se activa cuando se realizan actividades mentales de mayor complejidad (Rympa y D’Esposito, 1999).

En esta área del cerebro las funciones ejecutivas están implicadas en:

- Flexibilidad mental
- Formación de conceptos
- Planificación de tareas
- Organización temporal
- Razonamiento
- Memoria operativa
- Capacidad para inhibir
- Ejecución dual de tareas

El área Cingulada se localiza en las caras internas de las áreas prefontales, sobre la mitad anterior del fascículo cingulado. Su función se centra especialmente en los procesos motivacionales, el inicio de la actividad y el control de la atención sostenida. Es una rea de especial relevancia en los procesos volitivos e intencionales del ser humano, incluido el lenguaje. (J.A.Portellano, 2011). En esta área del cerebro las funciones ejecutivas están implicadas en:

- Motivación
- Intencionalidad para iniciar actividades
- Atención sostenida

La corteza orbitofrontal está implicada en el procesamiento y control socioemocional, en el trabajo cooperativo y su responsabilidad en las funciones frontales se debe a sus conexiones con la amígdala y el sistema de motivación y gratificación de la dopamina.

Desde la perspectiva educativa, es importante analizar el aprendizaje de las funciones ejecutivas del cerebro, dada su responsabilidad en la dirección y regulación de la conducta del alumno. El autocontrol y la capacidad de inhibir la respuesta instintiva constituyen factores críticos en la optimización del rendimiento académico. (Guillen, 2012).
En esta área del cerebro las funciones ejecutivas están implicadas en:

- Regulación emocional
- Sentido ético
- Autoconciencia

2.6. Lóbulo Frontal, las funciones ejecutivas y su relación con los demás lóbulos

El cerebro se compone de 5 lóbulos, los cuales alberga funciones específicas. Cada lóbulo tiene un lado derecho e izquierdo, siendo este último el dominante. Los lóbulos han sido identificados como:

Lóbulo Frontal: Esta se encarga de las funciones de comportamiento, control de impulsos y estados anímicos. A su vez, están relacionados con la producción del lenguaje, la memoria a corto plazo, las funciones motoras de los miembros inferiores y el comportamiento sexual. Así mismo es aquí donde se localizan las funciones ejecutivas.

"Cuando hay alteración de este lóbulo las personas generalmente, son agresivas, comen mucho, pueden ser depresivas o apáticas", explica Diana Katherine Mantilla Barbosa, neuróloga del Hospital Universitario San Vicente Fundación, 2012.

Lóbulo Parietal: Ellos intervienen en el procesamiento de la información sensorial, el conocimiento de los números y conservan las cosas aprendidas como lenguajes extranjeros, acciones como montar en bicicleta, vestirse, caminar, actividades que podría decirse, son cotidianas y se hacen de manera mecánica. Las funciones evaluadas en esta área son: capacidad para clasificar, atención selectiva y resistencia a la interferencia.
Lóbulo temporal: Estos son el asentamiento de la memoria. El del lado izquierdo está relacionado con el recuerdo de palabras y nombres de objetos. El derecho guarda la memoria visual. Estos lóbulos también, controlan la parte motora de miembros superiores y algo de la cara. Las funciones evaluadas en esta área son: memoria explícita, lenguaje comprensivo y conocimiento generales.

Lóbulo occipital: Allí se ubica la función visual controlando la capacidad para ver e interpretar lo que se observa. Las funciones evaluadas en esta área son: memoria, atención, razonamiento lógico y rapidez perspectiva.

Lóbulo de la ínsula: Comprende la región de la corteza cerebral oculta por los pérculos frontal, parietal y temporal, en el fondo de la cisura de Silvio, constituyendo, desde el punto de vista anatómico y fisiológico, un complejo centro de conexión entre el sistema límbico y el neocórtex.

Algunos autores hablan de un quinto lóbulo, el límbico: El sistema límbico está formado por varias estructuras, entre ellas la amígdala, el tálamo, el hipotálamo, el hipocampo, el cuerpo calloso entre otras. El sistema límbico gestiona las respuestas fisiológicas ante los estímulos emocionales. Se relaciona con la memoria, atención, emociones, instintos sexuales, personalidad y conducta.

Por último, el tallo cerebral ubicado en la base del cerebro que se encarga de funciones vitales como la respiración, la regulación del ritmo cardíaco, la digestión de alimentos y la circulación sanguínea. (Fuster, 2002).

El lóbulo frontal es la expresión más depurada del elevado grado de desarrollo mental alcanzado por el ser humano a lo largo del proceso evolutivo. Su territorio, situado delante de la
cisura central y por encima de la cisura lateral, ocupa la tercera parte de la superficie total del cerebro. (J.A.Portellano, 2011).

El mismo supervisa la actividad de las restantes áreas cerebrales, programando y regulando todos los procesos cognitivos y, de modo especial, aquellos de mayor complejidad. Su principal competencia es el funcionamiento ejecutivo, que permite programar, desarrollar, secuenciar, ejecutar y supervisar cualquier plan de actuación dirigido al logro de objetivos específicos y a la toma decisiones. La regulación de los procesos atencionales también depende en última instancia del buen funcionamiento del lóbulo frontal, permitiendo el control de la atención sostenida y evitando la distracción ante los estímulos irrelevantes procedentes del entorno. (Benson, 2005).

El lóbulo frontal es un sistema neuropsicológico muy complejo que desarrolla su actividad gracias a las conexiones recíprocas que establece con otras áreas del Sistema Nervioso Central como el tálamo, los ganglios basales, el sistema límbico, la formación reticular y las áreas asociativas del resto de la corteza cerebral.

2.6.1. La corteza motora

La corteza motora diseña y planifica las actividades voluntarias. También se encarga de adquirir, archivar, programar, secuenciar, ejecutar los movimientos intencionados, incluyendo los requeridos en el lenguaje expresivo y la escritura. Se encuentra dividida en tres áreas anatomofuncionales diferentes: el área motora primaria, la corteza premotora y el área de Broca. (J.A.Portellano R. M., 2011).

2.6.2. Área motora primaria

El área motora primaria (AMP) está situada en la circunvolución frontal ascendente, inmediatamente por delante de la cisura de Rolando, correspondiente al área de 4 de Brodmann. El AMP tiene un mayor control sobre la actividad de los dedos de las manos y de los pies, los músculos faciales y los fonatorios.
2.6.3. Corteza Premotora

La corteza está situada delante del área motora primaria y es responsable de programar las secuencias que componen cada una de las acciones motoras intencionales. Su función consiste en generar, automatizar y archivar programas motores, facilitando la ejecución fluida de los movimientos voluntarios. Dentro de la corteza promotora se distinguen tres áreas funcionales: el cortex premotor, el área motora suplementaria (AMS) y los campos visuales de los ojos.

2.6.4. El cortex Premotor

Se localiza en la cara externa de la zona anterior de los lóbulos frontales, mientras que el AMS se sitúa en las caras internas de ambos lóbulos frontales, por encima del cíngulo anterior. Ambos centros están especializados en la preparación de los programas motores que permiten realizar los movimientos voluntarios de forma ordenada y fluida.

2.6.5. Área de Broca

EL área de Broca (AB) es el principal centro del lenguaje expresivo y recibe dicha denominación en honor al neuroanatomista Paul Broca, que identificó por vez primera cual era la zona del cerebro encargada del lenguaje expresivo. Broca puso de manifiesto que la lesión de dicha área producía afasia expresiva, es decir, pérdida de capacidad para articular palabras y oraciones.

2.6.6. El Área Prefrontal

La zona anterior del lóbulo frontal se denomina área prefrontal y es el centro más importante para la regulación de los procesos cognitivos del ser humano. Mantiene estrechas conexiones recíprocas con el resto del cerebro, pero no establece conexiones directas con áreas sensoriales o motoras primarias, por lo que sus lesiones no provocan parálisis ni trastornos sensoperceptivos graves.
El área prefrontal es la máxima expresión de la inteligencia humana, ya que asume la responsabilidad de coordinar los procesos cognitivos, así como de programar la conducta para lograr la toma de decisiones. Se distinguen en las tres áreas funcionales: dorsolateral, cingulada y orbitaria. (J.A.Portellano R. M., 2011).

2.7. Fisiopatología de las funciones ejecutivas

La fisiopatología es el estudio de los procesos patológicos (enfermedades), físicos y químicos que tienen lugar en los organismos vivos durante la realización de sus funciones vitales.

La etiología y sobre todo el momento en que ocurre el daño-compromiso cerebral son primordiales para determinar las características de desarrollo que presentarán los niños más adelante. Por lo general, el daño-compromiso durante la gestación y durante la etapa perinatal tiene un impacto mucho más significativo que el daño-compromiso posnatal. A su vez, una lesión en los primeros años de vida tiene mayor impacto que el daño en edades posteriores (Levin, 1997), quizá porque los cambios más acelerados y extendidos de desarrollo cerebral ocurren antes de los cinco años de edad, por lo que teóricamente el daño cerebral en este periodo tendría efectos neuropsicológicos más significativos. (Murillo, 2008).

El deterioro en el área prefrontal puede ser por diversas etiologías, incluye distintos factores: genéticos, metabólicos, algunos tipos de epilepsia, disgenesias cerebrales, prematurez, hipoxia, exposición tóxica y daño traumático o quirúrgico (Voeller, 2004). Es importante diferenciar dos tipos básicos de daño-compromiso neurológico: el daño prenatal y perinatal, el más común en el desarrollo, y el daño adquirido.
Durante el desarrollo de las funciones ejecutivas se ha encontrado una relación entre el mayor compromiso frontal y el peor desempeño neuropsicológico, así como características de desempeño distintas entre los casos con daño frontoorbital y los casos con daño frontal dorsolateral. Los primeros presentan dificultades en el seguimiento de órdenes y en control inhibitorio, en tanto que los segundos muestran dificultades de desempeño ejecutivo (al., 2001).

El modelo de Barkley (1997) es quizá una de las perspectivas más extensamente utilizadas en el desarrollo del control conductual en niños. En su modelo plantea que el desarrollo de la capacidad de autorregulación depende, sobre todo, de la capacidad de control inhibitorio, así como de cuatro factores más: memoria de trabajo, regulación verbal, control atencional y emocional, y manipulación mental.

En particular, se ha aplicado a niños con déficit de atención en su variante hiperactiva-impulsiva. El modelo neuropsicológico de Barkley (1997) de desinhibición conductual considera la hiperactividad y la impulsividad defectos funcionales de inhibición. Así, el subtipo inatento debe ser considerado como un tipo diferente, ya que no tiene de base un defecto de desinhibición conductual, sino de pasividad, retraimiento, disminución de capacidad de procesamiento y dificultades de atención selectiva.

Para el caso de la hiperactividad y la impulsividad, destaca tres mecanismos básicos afectados:

1. Capacidad para inhibir la aparición de una respuesta potenciada (aun cuando puede determinar que la activación de esta acción no es la manera adecuada de responder).

2. Capacidad para detener una acción (aun cuando ésta ya no es adecuada).

3. Capacidad para controlar las interferencias durante el desarrollo de los procesos cognitivos. Establece que estos tres mecanismos y no “la atención” representan las
principales dificultades en los niños con TDA hiperactivos-impulsivos y combinados (Barkley, 1997).

2.7.1. Evaluación de las Funciones Ejecutivas

- **Pruebas Neurológicas**

Las pruebas neurológicas evalúan las habilidades motoras y sensoriales, el funcionamiento de uno o más nervios craneaños, audición y habla, visión, coordinación y equilibrio, estado mental, y cambios en el ánimo y la conducta, entre otras. Se utilizan artículos como un, linterna, martillo para reflejos, oftalmoscopio y agujas para ayudar a diagnosticar tumores cerebrales, infecciones como la encefalitis y la meningitis, y enfermedades como el Parkinson, la enfermedad de Huntington, la esclerosis lateral amiotrófica y la epilepsia. Dentro de las pruebas neurológicas las cuales pueden ser usadas por médicos y psicólogos, son las siguientes:

- **Escala de Glasgow**

Desde 1974 se está utilizando la escala de Glasgow para valorar globalmente los problemas neurológicos.

- **Exploración de extremidades**

Se valora la movilidad y fuerza de las extremidades, si existen atrofias, si aparecen espasmos, contracciones involuntarias y la sensibilidad táctil.

- **Exploración Cerebelosa**

Hay un conjunto de pruebas que exploran el funcionamiento correcto o no del cerebelo. Su lesión se traduce en afectación de la coordinación de movimientos de las extremidades, así como del tipo de marcha o la capacidad de mantenerse erecto. Se explora si hay temblores, si la forma de caminar es estable o hay pérdidas de equilibrio, etc.
Pruebas Neuropsicológicas

Después de la Segunda Guerra Mundial se empezaron a desarrollar pruebas neuropsicológicas especialmente diseñadas para evaluar el lóbulo frontal y las funciones ejecutivas, si bien es cierto que inicialmente solo estaban diseñadas para adulto, pero años después también incluyeron las infantiles.

En general se trata de instrumentos de aplicación sencilla y que son muy sensibles a las lesiones prefrontales. La más utilizados son el Test de clasificación de tarjetas de Wisconsin (WCST; Grant y Berg, 2001), el Test Visomotor de Bender, la torre de Hanoi, los Tests de Fluidez Verbal, las tareas Go/ No go, el Rest de Colores y Palabras (Stroop; Golden, 2007), el Test de Laberintos de Porteus (Porteus, 2006), el Trail Making Test (TMT), tareas de fluidez de diseño y la ‘Gambling Task’. La capacidad para resolver con éxito estas pruebas se va fraguando a lo largo de la infancia, considerándose que a los 12 años ya es posible realizar todas ellas con un nivel de éxito similar al de los adultos (Portellano, 2005b, J.A. Portellano R. M., 2011)

El fin central de la evaluación neuropsicológica no es necesariamente localizar algún daño cerebral. Sin embargo, dado que algunas condiciones neurológicas tienen perfiles neuropsicológicos específicos, el perfil neuropsicológico podría ser utilizado como indicativo de una disfunción en una región cerebral particular.

Una buena exploración neuropsicológica debe incluir la evaluación de diferentes procesos o dominios cognoscitivos. Se debe evaluar el estado de alerta, la habilidad intelectual general, atención y orientación, funciones lingüísticas, viso- perceptuales, funciones espaciales, habilidades visomotoras, memoria, funciones ejecutivas (formulación de metas, planeación y
ejecución de planes dirigidos hacia una meta, razonamiento conceptual y abstracto) y finalmente, el estado afectivo del paciente.

2.7.2. Síndrome Disejecutivo

La lesión de la zona prefrontal produce un conjunto de síntomas que recibe la denominación de Síndrome Disejecutivo (SD), que también puede estar originado por lesiones en otros núcleos grises subcorticales o en las fibras que conectan a estos con el área prefrontal, como el núcleo caudado, el globo pálido, la sustancia negra o el tálamo.

En términos generales, la lesión de las áreas prefrontales provoca enlentecimiento del procesamiento cerebral y de la respuesta motora, dificulta la ejecución de los procesos cognitivos y altera el comportamiento y las respuestas emocionales en mayor o menor medida (Andrés y Van den Linden, 2002; Portellano, 2005c; Portellano, 2007). Las principales manifestaciones del Síndrome Disejecutivo se pueden sintetizar del siguiente modo:

- Dificultad para el control del pensamiento y perdida de la capacidad para planificar, secuenciar y resolver problemas complejos; la actuación tiende a ser fragmentaria, sustituyendo las operaciones intelectuales pertinentes por respuestas impulsivas y no premeditadas.
- Déficit atencional y distractibilidad acusada frente a los estímulos externos irrelevantes, lo que produce una excesiva dependencia ambiental.
- Incapacidad para abstraer ideas o establecer categorías
- Perdida de flexibilidad cognitiva, tendencia a la perseveración y rigidez del comportamiento.
- Alteración en la memoria operativa, con dificultad para a realización de tareas que requieren la ejecución dual de dos o más actividades simultáneamente.
- Alteraciones en la personalidad, el humor y el control emocional, con incremento de la impulsividad y desinhibición del comportamiento.

La zona anterior del cráneo resulta muy vulnerable frente a los traumatismos por lo que frecuente que si lesión provoque trastornos en el funcionamiento ejecutivo, al igual que sucede en otras patologías neurológicas como la epilepsia, la enfermedad de Parkinson o la esclerosis múltiple. Diversas patologías psiquiátricas como la esquizofrenia, la depresión o el trastorno obsesivo compulsivo también tienen manifestaciones características del Síndrome Disejecutivo.

2.7.3. Intervención neuropsicológica del Síndrome Disejecutivo

Entre los hallazgos en neuropsicología destaca un estudio longitudinal en donde se encontró que, si durante la infancia se presentaban dificultades en el desarrollo de las funciones ejecutivas, en edades posteriores se observaban dificultades de conducta (Wåhstedt et al., 2008).

En general, las lesiones en las regiones dorsolaterales afectan más a los procesos mentales, en comparación con, las lesiones en las zonas cinguladas y/o orbitrarias que repercuten más en los aspectos de personalidad y emocionales (Portellano, 2009).

El cerebro procesa y transforma la información procedente del exterior gracias a la plasticidad cerebral. Según Portellano, Martinez, y Zumarraga (2009): “La plasticidad cerebral es la capacidad que tiene el sistema nervioso para reorganizar su anatomía y su funcionamiento a lo largo de todo el ciclo vital, como consecuencia del aprendizaje, la experiencia o las lesiones”.

Los trastornos emocionales y de personalidad en el Síndrome Disejecutivo son habituales las alteraciones emocionales, comportamentales o de personalidad y de modo más frecuente tras lesionarse las áreas cinguladas y orbitrarias. Los trastornos emocionales de personalidad del síndrome disejecutivo se pueden agrupar en dos: trastornos pseudopsicopaticos y trastornos pseudodepresivos (Stuss y Levine, 2002)
2.7.3.1. Trastornos pseudopiscopáticos

Suelen estas causados por lesiones de la zona orbitaria, siendo característico un incremento en las manifestaciones de agresividad e impulsividad, comportamiento social adaptado y perdida de principios éticos. La presencia de pseudopsicopatía se debe a la perdida de la capacidad inhibitoria ejercida por el lóbulo frontal como consecuencia de su desconexión con el sistema límbico, que es donde se originan las emociones positivas y negativas (Gabbard, 1996).

2.6.3.2. Trastornos pseudodepresivos

Se producen con mayor frecuencia en lesiones cinguladas anteriores y en menor medida tras lesiones dosolaterales. Se manifiestan con una pérdida de iniciativa motora y lingüística, acompañada de sintomatología aparentemente depresiva, con apatía, hiposexualidad, hipoactividad, perdida de iniciativa y desinterés hacia el entorno. Dentro de las pruebas utilizadas para la detección del síndrome disejecutivo, encontramos las siguientes:

- La batería neuropsicológica ENFEN

Es un instrumento que permite valorar el nivel madurativo del niño y el rendimiento cognitivo en actividades relacionadas con las funciones ejecutivas. (Portellano, 2009). Además, es útil tanto para casos de posibles daños cerebrales, como para la mejora del rendimiento cognitivo ante una inmadurez o déficit. Este se puede manifestar con bajo rendimiento académico o fracaso escolar. (Portellano, 2009).
Test de clasificación de tarjetas de Wiscosin

La prueba fue inicialmente desarrollada en Estados Unidos por Grant y Berg en 1984 y es el instrumento más utilizado para evaluar las funciones ejecutivas. La realización de test de Wiscosin incrementa la actividad de las áreas dorsolaterales y cinguladas del lóbulo frontal. Las lesiones dorsolaterales producen pérdida de eficacia en la realización de esta prueba. (Portellano, 2009).

Gambling Task

Esta prueba consiste en un juego de cartas formado por cuatro barajas (A, B, C, D). Las personas sin daños en el área prefrontal, después de experimentar con las cartas, son capaces de establecer balances que les lleven a elegir preferentemente las cartas C Y D. Por el contrario, los sujetos con lesiones prefrontales eligen las barajas A y B (Bechara, 1994). Esta prueba permite apreciar la capacidad para programar la conducta a largo plazo, evaluando el control de los impulsos e identificando de alguna manera el sentido ético del sujeto.

La prueba ENFEN es una batería neuropsicológica, pero las tareas de sus pruebas también pueden ser utilizadas como herramientas terapéuticas para estimular el funcionamiento cognitivo y mejorar el rendimiento escolar. El supuesto en que se inspira este hecho es el de la plasticidad cerebral, que es la capacidad que tiene el sistema nervioso para reorganizar su anatomía y su funcionamiento a lo largo de todo el ciclo vital, como consecuencia del aprendizaje, la experiencia o las lesiones.

La rehabilitación cognitiva o neuropsicología es el conjunto de actividades que se utilizan para estimular y mejorar el rendimiento intelectual del niño en cualquier dominio de la
cognición; lenguaje, atención, memoria, funcionamiento ejecutivo, orientación espacial, cálculo, ect. (Hermann y Prentice, 1994; Portellano, 2005).

La rehabilitación cognitiva utiliza dos tipos de estrategias: restauración y sustitución (Muñoz Cespedes y Tirapu, 2001). Ambas técnicas tratan de mejorar el rendimiento cognitivo del niño, en la certeza de que cuando una función cognitiva mejora, inevitablemente se están produciendo una consolidación en la neuroquímica cerebral, ya que mediante el aprendizaje, la estimulación y la rehabilitación cognitiva es posible modificar la estructura de la sinapsis cerebrales. El aprendizaje y la experiencia siempre modifican y trasforman el cerebro.

2.8. Características principales de la población objeto de estudio, según su etapa y áreas de desarrollo

Todas las etapas son importantes y cada una trae consigo grandes cambios y experiencias. De los 6-12 años la fase escolar es uno de los ejes primordiales para el desarrollo del niño. En estas etapas afianzan más su independencia personal y social.

Dada la complejidad que implica el concepto de funciones ejecutivas, su presencia y el curso de su desarrollo en estadios tempranos del ser humano, fueron subestimadas o ignoradas por algún tiempo en la investigación neuropsicológica. No obstante, informaciones existentes muestra que ocurren cambios importantes que constituyen la base para una eficaz adquisición de las diferentes funciones.

La niñez temprana abarca el periodo comprendido entre los 3 y los 6 años y se considera una etapa de grandes cambios cognitivos y sociales, ya que en ese lapso se inicia la etapa preescolar en la cual es posible identificar precursores del desempeño ejecutivo. (Wiebe, 2011).
La mielinización es un factor de gran importancia en el desarrollo de las FE, dado que estos procesos no dependen tan sólo de la maduración de la CPF, sino de la mayor eficacia en sus conexiones aferentes y eferentes con otras regiones corticales y subcorticales (Evans, 2001). Por otro lado, la densidad sináptica consigue su mayor grado entre el primer y segundo años, cuando supera incluso el 50% del nivel adulto, mientras que la diferenciación y la división de la CPF finalizan alrededor de los 4 años (Diamond, 2002). El metabolismo cerebral es mayor durante etapas tempranas del desarrollo; se ha reconocido que entre los 3 y 9 años llega a ser 2.5 veces mayor que en el cerebro adulto y después de los 10 años comienza su descenso (Chugani, 1998). Debido a su complejidad, la corteza frontal tiene un desarrollo más lento y prolongado que otras áreas cerebrales, por esto muchas de las FE no están completamente desarrolladas hasta finales de la segunda década de la vida.

2.8.1 Características de los niños en la segunda infancia

El desarrollo del cerebro en la niñez temprana es menos acusado que durante la infancia, pero el estirón de su crecimiento continuo por lo menos hasta los tres años, momento en que su peso equivale a casi 90% del peso del cerebro adulto. (Gabbard, 1996).

La densidad de las sinapsis en la corteza prefrontal alcanza su punto más alto a los 4 años (Lenroot y Giedd, 2006). Y más o menos a esa edad se ha completado también la mielinizacion de las vías auditivas. (Bennes, 1994).

A los seis años el cerebro ha alcanzado casi 95% de su volumen máximo, pero existen grandes diferencias individuales.

Ocurre un cambio gradual en el cuerpo calloso, que conecta los hemisferios izquierdo y derecho. La mielinizacion progresiva de las fibras del cuerpo calloso permite una transmisión más rápida de la información y una mejor integración entre ellos (Toga et al., 2006). Este
desarrollo, que continua hasta los 15 años, contribuye a mejorar funciones como la coordinación de los sentidos, procesos de memoria, atención y activación, así como el habla y la audición (Lenroot y Giedd, 2006). Entre los tres y los seis años el crecimiento más rápido ocurre en las áreas frontales que regulan la planeación y organización de las acciones. De los seis a los once años, el crecimiento más rápido ocurre en el área que sostiene principalmente el pensamiento asociativo, el lenguaje y las relaciones espaciales (Thompson et al., 2000).

2.8.2. Características de los niños en el inicio de la pubertad y entrada a la adolescencia.

De acuerdo con Piaget, más o menos a los siete años entran a la etapa de las operaciones concretas en la que pueden realizar operaciones mentales, como los razonamientos, para resolver problemas concretos (reales). Los niños piensan de manera lógica porque ya son capaces de considerar múltiples aspectos de una situación. Sin embargo, su pensamiento todavía está limitado a las situaciones reales del aquí y ahora. (Papalia, 2009)

Enfoque del procesamiento de información: planificación, atención y memoria

A medida que los niños avanzan por los años escolares, progresan de manera constante en las habilidades para regular y mantener la atención, procesar y retener información, y planear y supervisar su conducta.

Todos esos desarrollos interrelacionados contribuyen a dar forma a la función ejecutiva, el control consciente de los pensamientos, emociones y acciones para alcanzar metas o resolver problemas. A medida que aumenta su conocimiento, los niños toman mayor conciencia sobre a qué tipos de información es importante prestar atención y recordar. Los escolares también entienden más acerca de cómo funciona la memoria, conocimiento que les permite planear y usar estrategias, o técnicas deliberadas, para ayudarse a recordar.
Los adolescentes no solo tienen una apariencia diferente de los niños más pequeños, sino que también piensan y hablan de manera distinta. La velocidad con que procesan la información sigue aumentando. Aunque en ciertos sentidos su pensamiento aún es inmaduro, muchos son capaces de adentrarse en el razonamiento abstracto y elaborar juicios morales complejos, además de poder hacer planes más realistas para el futuro.

Los adolescentes entran en lo que Piaget denominó el nivel más alto del desarrollo cognoscitivo, las operaciones formales, cuando perfeccionan la capacidad de pensamiento abstracto. Esta capacidad, por lo regular alrededor de los 11 años, les proporciona una forma nueva y más flexible de manipular la información. (Papalia, 2009)

Los cambios en la manera en que los adolescentes procesan la información reflejan la maduración de los lóbulos frontales del cerebro y pueden explicar los avances cognosciticos descritos por Piaget. La experiencia tiene una gran influencia en la determinación de cuales conexiones neuronales se atrofian y cuales se fortalecen. Por consiguiente, el progreso en el procesamiento cognoscitivo varía mucho entre cada uno de los adolescentes. (Kuhn, 2006).

Cambio estructural Los cambios estructurales en la adolescencia incluyen:

- Cambios en la capacidad de la memoria de trabajo
- La cantidad creciente de conocimiento almacenado en la memoria de largo plazo
- La información almacenada en la memoria a largo plazo puede ser declarativa, procedimental o conceptual.
- El conocimiento declarativo (“saber que “) consta de todo el conocimiento factual que una persona ha adquirido.
El conocimiento procedimental ("saber cómo") consta de todas las habilidades que una persona ha adquirido, como multiplicar y dividir, y conducir un vehículo.

El conocimiento conceptual ("saber por qué ") es la comprensión de, por ejemplo, que una ecuación algebraica sigue siendo cierta si en ambos lados se añade o se sustrae la misma cantidad.

Cambio funcional Los procesos para obtener, manejar y retener la información son aspectos funcionales de la cognición. Entre ellos se encuentran el aprendizaje, el recuerdo y el razonamiento, todos los cuales mejoran durante la adolescencia.

Entre los cambios funcionales más importantes se pueden mencionar:

1) El incremento continuo de la velocidad del procesamiento (Kuhn, 2006)

2) Un mayor desarrollo de la función ejecutiva, la cual incluye habilidades como atención selectiva, toma de decisiones, control inhibitorio de respuestas impulsivas y control de la memoria de trabajo.

2.8.3. Importancia del fortalecimiento de las Funciones Ejecutivas en los niños

Actualmente, un tema que ha sido ampliamente estudiado es el de las Funciones Ejecutivas (FE), concepto que ha tomado cada vez mayor fuerza por la asociación con competencias cognitivas y sociales, así como también por su relación con el éxito escolar. (Clark, 2017).

Ya que las Funciones Ejecutivas son las que nos ayudan a ordenar y organizar toda la actividad cognitiva y emocional. Por lo tanto, un entrenamiento y estimulación adecuados que permitan el fortalecimiento de estas funciones ejecutivas resulta esencial para el buen funcionamiento, social, académico y personal de los niños y niñas. Permiéndoles alcanzar sus metas, al tratarse de una función que planifica, anticipa y reajuste constantemente.
Por igual las funciones ejecutivas nos permiten resolver problemas. Cuando nos encontramos ante un problema o tarea por resolver actúan de la siguiente manera:

- Inhiben otros problemas irrelevantes, así como la influencia de las emociones y motivaciones.
- Activan el sistema de atención hacia la tarea a realizar.
- Buscan en la memoria información sobre el problema o tarea, si es nuevo o no lo es.
- Basándose en la información anticipan y analizan posibles consecuencias.
- Automonitorizan esta actuación para evitar errores, autoevalúan al tiempo que ejecutan para reajustar la acción y autoanalizan para guardar la información pertinente.
- Por último, fortalecer las funciones ejecutivas en temprana edad se pueden prevenir múltiples trastornos como a su vez problemas de aprendizaje y atención un, ya que la estimulación de las funciones ejecutivas a temprana edad, permite que los niños alcancen una mayor capacidad de autorregulación pues adquieran las herramientas necesarias para la solución de problemas en todas las áreas de su vida.
2.8. La Robótica

La robótica es la ciencia de ingeniería y la tecnología de los robots (entendiendo al robot como una máquina capaz de realizar tareas de manera autónoma o semi autónoma), relacionada con la electrónica, la mecánica y el software. (Craig, 2006).

El término robot como concepto fue introducido por el escritor checo Karel Capek en su obra R.U.R publicada en 1920. En los años treinta se comenzó a difundir por Europa y luego por el resto del mundo, alcanzando gran popularidad. Hoy, el robot es descrito como una máquina programable, que puede ser móvil o articulada. El primero de ellos, llamado Unimate, fue instalado en 1961 para levantar piezas calientes de metal y apilarlas.

Un robot puede funcionar con energía hidráulica, eléctrica o neumática. Los que utiliza la industria son casi todos de la primera generación de robots y su funcionamiento está totalmente limitado a la programación, sin poder realizar ningún tipo de decisión propia. Los movimientos que realizan están codificados en un programa elaborado matemáticamente o a partir de los movimientos de un instructor que se almacenan en la memoria de un ordenador. (Felice).

Los primeros fueron desarrollados para aplicaciones industriales, espaciales y submarinas, pero de a poco fueron ganando terrenos hasta realizar tareas humanas en servicios y oficinas e incluso algunos que pueden realizar tareas del hogar. Los robots representan una opción más barata, precisa y confiable que los humanos en numerosos trabajos. Además, son ideales en las labores que representan un riesgo para una persona.
2.8.1. Clasificación de los Robots

Una de las más conocidas formas de clasificación es la determinada por su arquitectura. Cabe decir que, pese a que la clasificación anterior es la más conocida, existe otra no menos importante donde se tiene más en cuenta la potencia del software en el controlador, lo que es determinante de la utilidad y flexibilidad del robot dentro de las limitantes del diseño mecánico y la capacidad de los sensores (Zabala, 2008).

De acuerdo a esta posición los robots han sido clasificados de acuerdo a:

- Móviles
- Zoomórficos
- Médicos
- Industriales
- Teleoperadores
- Androides

Móviles

- Los robots móviles están provistos de patas, ruedas u orugas que los capacitan para desplazarse de acuerdo su programación. Elaboran la información que reciben a través de sus propios sistemas de sensores y se emplean en determinado tipo de instalaciones industriales, sobre todo para el transporte de mercancías en cadenas de producción y almacenes. También se utilizan robots de este tipo para la investigación en lugares de difícil acceso o muy distantes, como es el caso de la exploración espacial y las investigaciones o rescates submarinos. Por ejemplo:... Son más comunes de ruedas, sino que también incluyen robots con patas, con dos o más patas (humanoides, o asemejarse a animales o insectos).
Zoomórficos

Robots caracterizados principalmente por su sistema de locomoción que imita a diversos seres vivos. Los androides también podrían considerarse robots zoomórficos.

Médicos

Los robots médicos son, fundamentalmente, prótesis para disminuidos físicos que se adaptan al cuerpo y están dotados de potentes sistemas de mando. Con ellos se logra igualar con precisión los movimientos y funciones de los órganos o extremidades que suplen.

Androides

Tienen forma o apariencia humana, y además imita algunos aspectos de su conducta de manera autónoma. La palabra androide posee un origen etimológico griego, al estar constituido por andro (hombre) y eides (forma). Un robot es una máquina o ingenio electrónico programable, capaz de manipular objetos y realizar operaciones antes reservadas solo a las personas. El robot humanoide es aquel que se limita simplemente a imitar los actos y gestos de un controlador humano, por lo que no es un verdadero androide, propiamente dicho. Uno de los muchos ejemplos de el gran avance que tiene el desarrollo de robots androides en estos días es Nao quien es el primer androide que manifiesta sentimientos y emociones, este está programado para adaptarse a conductas similares a las de un bebe de 1 año. También esta Milo que es un robot diseñado para trabajar con personas que padezcan del Trastorno del Espectro Autista (TEA), está programado para enseñarle la parte social y emocional al niño. Por ultimo esta Sophia es un robot que puede conversar, gesticular, e incluso hacer algunas bromas mientras conversa. Y ahora, Arabia Saudita le ha otorgado la ciudadanía.
Industriales

Los robots industriales son artilugios mecánicos y electrónicos destinados a realizar de forma automática determinados procesos de fabricación o manipulación.

Son en la actualidad los más frecuentes. Japón y Estados Unidos lideran la fabricación y consumo de robots industriales siendo Japón el número uno.

Teleoperadores

Dependiendo de cómo se defina un robot, los teleoperadores pueden o no clasificarse como robots. Los teleoperadores se controlan remotamente por un operador humano. Cuando pueden ser considerados robots se les llama “telerobots”. Los robots tele operadores son definidos por la Nasa como: Dispositivos robóticos con brazos manipuladores y sensores con cierto grado de movilidad, controlados remotamente por un operador humano de manera directa o a través de un ordenador.

Híbridos

Estos robots corresponden a aquellos de difícil clasificación cuya estructura resulta de una combinación de las expuestas anteriormente.

La Asociación de Robots Japonesa (JIRA) ha clasificado a los robots dentro de seis clases sobre la base de su nivel de inteligencia:

1.- Dispositivos de manejo manual, controlados por una persona.

2.- Robots de secuencia arreglada.

3.- Robots de secuencia variable, donde un operador puede modificar la secuencia fácilmente.

4.- Robots regeneradores, donde el operador humano conduce el robot a través de la tarea.

5.- Robots de control numérico, donde el operador alimenta la programación del movimiento, hasta que se enseñe manualmente la tarea.
6.- Robots inteligentes, los cuales pueden entender e interactuar con cambios en el medio ambiente. (Canaviri, 2000).

2.8.2. La Robótica Educativa

Es de suma importancia, hacer una adecuada definición de la robótica educativa o pedagógica como podemos la define uno de los más versados exponentes latinoamericanos en el tema es “una disciplina que permite concebir, diseñar y desarrollar robots educativos para que los estudiantes se inicien desde muy jóvenes en el estudio de las ciencias y la tecnología. (Velasco, 2007).

Otros autores la definen como la actividad de concepción, creación y puesta en funcionamiento, con fines psicopedagógicos, de objetos tecnológicos que son reproducciones reducidas muy fieles y significativas de los procesos y herramientas robóticos que son usados cotidianamente, sobre todo, en el medio industrial. (Vivet, 1989).

La robótica educativa no busca que los estudiantes se conviertan en expertos en robótica, lo que busca es generar en ellos competencias que resultan esenciales para el adecuado desarrollo de todas sus capacidades y funciones por consiguiente una mejor preparación para enfrentar los desafíos personales que le impone la era tecnológica. Se busca el fomentar la independencia, la creatividad, el trabajo en equipo, la responsabilidad y la curiosidad científica (Acuña, 2007; Goh y Aris, 2007; LEGO educational, 2008; Ruiz-Velasco, 2007).

Esta estrategia educativa integra y hace tangibles a la ingeniería, las matemáticas y la computación, haciendo que se genere aprendizaje a partir de la recompensa por la resolución de errores y de la persistencia en la búsqueda de nuevas soluciones. Los materiales de robótica, como por ejemplo los creados por LEGO, ofrecen posibilidades de improvisación que permiten incluso a niños pequeños construir una máquina, someterla a prueba, corregir errores y superar
sus expectativas, generando un diálogo con el mismo que lo hace ser más capaz en la búsqueda de soluciones y más confiado de obtener resultados. (Stager, 2010).

La implementación de la robótica en las aulas permite a los estudiantes a través del juego prediseñado que tengan un constructo y además que interactúen con situaciones que se presentan en el mundo real, utilizando una manera simbólica e instrumental (Papert, 1995).

Lo que se persigue mediante la generación de estas nuevas experiencias tecnológicas en los estudiantes es el desafío a la curiosidad y a las vocaciones científicas, incrementándoles su imaginación y la subsunción de nuevos conocimientos a su estructura cognoscitiva (Ausubel, 2002).

Ruiz Velasco en su libro Educatrónica: innovación en el aprendizaje de las ciencias y la tecnología. Nos habla sobre la importancia de la concepción, diseño, y desarrollo de un robot sirve únicamente para que los niños y adolescentes aprendan de manera cooperativa y colaborativa de distintos temas y conceptos provenientes de diferentes áreas del conocimiento, además de aprender a lanzar hipótesis, a negociar, integrar, discutir, probar, equivocarse, y a repetir una y muchas veces el conjunto de pasos necesarios para experimentar el método científico.

Con el desarrollo de la robótica, los psicólogos hicieron reiteradamente conjeturas para comprender los actos de la mente, la conciencia. Los computadores, creados a mitad del siglo XX, permitieron establecer comparaciones entre las operaciones por ellos efectuadas y el propio cerebro humano, ayudando a formular nuevas hipótesis sobre la mente y los procesos mentales.
2.8.3. La importancia de la Robótica para la psicología como herramienta de fortalecimiento de las funciones ejecutivas.

La robótica se ha convertido en un nuevo método para aportar al aprendizaje y desarrollar competencias generales como la socialización, la creatividad y la iniciativa, que permitan al estudiante dar una respuesta eficiente a los entornos cambiantes del mundo actual.

La importancia de esta disciplina es que nos permite percibir los problemas del mundo real, imaginar y formular las posibles soluciones y poner en marcha sus ideas, mientras se siente motivado por temas que se van desarrollando (Aliane, 2007). En este sentido, un ambiente de aprendizaje con robótica educativa, es una experiencia que contribuye al desarrollo de nuevas habilidades, nuevos conceptos, fortalece el pensamiento sistémico, lógico, estructurado y formal del estudiante, al tiempo que desarrolla su capacidad de resolver problemas concretos (Odorico, 2004).

Diversos estudios demuestran como la Robotia ayuda a diferentes ciencias, demostrando desde un punto de vista psicologico al desarrollo de nuevos métodos, aportando significativamente a personas con algun trastorno, problema de aprendizaje o discapacidad física. Las investigaciones han demostrado que los niños autistas tienen una gran afinidad hacia los juguetes mecánicos, especialmente los robots, en donde se muestra los resultados alcanzados en el progreso cognitivo de los niños. (Baez, 2018).

Los principales procesos incluidos en las Funciones Ejecutivas y que también son procesos los cuales necesita la robotica para la construccion, son los siguientes:

- Motivacion: Es un rasgo esencial para el desarrollo de cualquier plan de accion. De este modo, las conductas volitivas nos permiten iniciar actividades, desarrollar planes y lograr objetivos. En la robotica es una excelente manera de motivar a los estudiantes a aprender
matemáticas o ciencias mediante la construcción de robots. En este proceso los niños aprenden a trabajar en pequeños grupos, evitar la frustración y fomentar la motivación.

- Pensamiento divergente: Esta estrechamente ligado a la creatividad. El area prefrontal es el centro de activacion de los procesos de creatividad y de pensamiento divergente. La robótica presenta con frecuencia desafíos abiertos que no conducen a una única solución. Forzar a los estudiantes a experimentar cambios en la forma en que piensan acerca de cómo abordar problemas los impulsa a ser creativos. Este tipo de desafíos promueve interacciones entre los alumnos y momentos en los que los estudiantes piensan para encontrar la solución a un problema. La creatividad y la resolución de problemas son esenciales al momento de construir un robot y hacer que éste cumpla con los obstáculos.

- Regulacion atencional: Es el sensor de las Funciones ejecutivas, ya que la atencion voluntaria permite que se puedan llevar a cabo todos los procesos cognitivos. La atencion es la puerta de entrada de la cognicion, siendo el area prefrontal el “final de trayecto” de los procesos atencionales que se inician en la formacion reticular mesencefalica. La robotica estimula la parte de atencion en el niño, ya que a la hora de armar o programar un robot se necesita de mucha capacidad de atencion, por lo que el desarrollo del mismo te obliga a tener presente diversos procesos atencionales para la creacion del robot. La interacción con los robots puede reforzar los procesos educativos y los resultados, tales como el aprendizaje conceptual y el entrenamiento cognitivo.

- Flexibilidad mental: Es un atributo funcional imprescindible, ya que permite adaptar las respuestas a las nuevas contingencias o estímulos, generando nuevos patrones de conducta o realizando una adecuada inhibición de las respuestas que resultan inadecuadas. Para la robotica esta fase es elemental a la hora de construir ya que en la elaboracion del robot necesitamos la adaptacion para reconocer nuevos procesos dentro del armado, el cual es totalmente
desconocido y complejo de utilizar a primera instancia, por lo que la flexibilidad mental nos ayudaría a generar nuevos patrones de conducta, para inhibir cualquier acción de frustración al iniciar con la construcción.

- **Inteligencia Fluida**: Es el estandarte de las Funciones Ejecutivas, ya que permite la resolución de nuevos problemas, especialmente aquellos de mayor complejidad. Aprender a través de la robótica aumenta el compromiso de los niños en actividades basadas en la manipulación, el desarrollo de habilidades motoras, la coordinación ojo-mano y una forma de entender las ideas abstractas.

- **Memoria de Trabajo**: Es una modalidad de memoria a corto plazo que actúa como un sistema que provee almacenamiento temporal de la información, permitiéndonos el aprendizaje de nuevas tareas. La robótica estimula la memoria de trabajo apoyando el aprendizaje de nuevos métodos de enseñanza a través de lenguaje de programación, lo que les permite ser protagonista de su propio aprendizaje. Los niños desarrollan una mejora en la atención y en la concentración.

Dicho esto podemos analizar la estrecha relación que tiene la robótica y cómo puede fortalecer a las funciones ejecutivas. En los primeros años de formación escolar, los expertos recomiendan estimular la creatividad, psicomotricidad, así como las habilidades cognitivas. Trabajando las areas: lenguaje, cognición, personal y emocional, así como el área social. La robótica educativa en primaria y secundaria ofrece exponencialmente esas posibilidades a los niños y adolescentes.
Herramientas de aprendizaje: Kits

Los Kits robóticos para niños, adolescentes y adultos son los que permitirá construir los robots. Con ellos pueden hacer diferentes modelos con las piezas, sensores, motores, baterías, led y demás componentes robóticos que incluyen para la creación del robot.

Elementos de construcción

Los elementos de construcción están constituidos por ladrillos, planchas, ladrillos curvos, ladrillos biselados, ladrillos redondos, entre otros.

Descripción de los Dispositivos Eléctricos

El Hub LEGO USB controla los sensores y motores del software WeDo. El software WeDo reconoce hasta tres hubs LEGO conectados a la computadora y por vía bluetooth.

Motor: El motor se puede programar para que gire en un sentido u otro, y para que se mueva a distintas velocidades. La alimentación del motor se suministra a través del voltaje del puerto USB del equipo (5V).

Sensor de Movimiento: El sensor de movimiento detecta objetos hasta una distancia de 15 centímetros dependiendo del diseño del objeto.

Sensor de inclinación: El sensor de inclinación detecta la dirección en la que se inclina. Este sensor dispone de seis posiciones diferentes: inclinación a la derecha, inclinación a la izquierda, inclinación hacia arriba, inclinación hacia abajo, ninguna inclinación y cualquier inclinación.

Dentro del inmenso programa que ofrece Robotic Academy Dominicana –ROADOM- trabaja distintas líneas de materiales educativos diferenciadas por los objetivos y por su nivel de complejidad. La empresa está certificada por las más importantes compañías en el mundo de robótica, lego y vex.
LEGO® es uno de los sistemas de más calidad y con mayor valor lúdico-educativo que podemos comprar en la actualidad en una juguetería. Con los juguetes de construcción LEGO®, los niños pueden desarrollar su imaginación creando cantidad de inventos y robots con LEGO® MINDSTORMS®, LEGO® Technic, Power Functions, etc. (LEGO).

La compañía danesa LEGO®, desde sus inicios en 1953, ha mantenido un nivel de calidad excepcional, de manera que, si cogemos uno los primeros ladrillos de plástico, aún conservará la misma tonalidad de color y será perfectamente compatible con los ladrillos de ahora. No caducan nunca.

Comprar LEGO® no es sólo comprar un juguete, es invertir en el desarrollo de las habilidades técnicas, la percepción espacial, psicomotricidad fina y la creatividad de nuestros hijos. Algo fundamental para su educación y su futuro profesional. (Página web oficial de Lego Education y Robotix).

Lego presenta en la actualidad cuatro líneas de productos diferentes:

Lego Mindstorms: Es una línea de juguetes de robótica para niños fabricado por la empresa LEGO, que posee elementos básicos de las teorías robóticas, como la unión de piezas y la programación de acciones en forma interactiva. Este robot fue comercializado por primera vez en septiembre de 1998.

Comercialmente se publicita como Robotic Invention System1, en español Sistema de Invención Robotizado (RIS). También se vende como herramienta educacional, lo que originalmente se pensó en una colaboración entre LEGO y el MIT. La versión educativa se llama Lego Mindstorms for Schools, en español Lego Mindstorms para la escuela y viene con un software de programación basado en la GUI de Robolab.
LEGO Mindstorms es en la actualidad el material de construcción más eficaz para comenzar a experimentar con robots y concentrarnos en el aspecto académico del aprendizaje.

Lego Mindstorms puede ser usado para construir un modelo de sistema integrado con partes electromecánicas controladas por computador. Prácticamente todo puede ser representado con las piezas tal como en la vida real, como un elevator o robots industriales. Hasta 2015 ha habido tres generaciones de Lego Mindstorms: el bloque RCX, el bloque NXT y el EV3.

LEGO® WEDO: Es un kit de la familia de Lego Education formado por 158 piezas tipo LEGO que nos permitirá la construcción tradicional de figuras. A su vez, tiene una serie de piezas que permiten la conexión de nuestra construcción a un ordenador para programar el comportamiento y dotarla así de movimiento. Aunque se aconseja su uso a partir de 5 años, creemos que, si el alumnado no está familiarizado con la robótica, esquemas de construcción de LEGO y programación utilizando comandos gráficos, convendría su uso a partir de los 7-8 años.

LEGO® Education WeDo 1.0 es el modelo más sencillo de WeDo, ya que solo está compuesto por 150 piezas y el lenguaje de programación es más pobre ya que es con un cable. En el WeDo 2.0 cuenta con una programacion más moderna.

LEGO® Education WeDo 2.0 es la esperada nueva versión del exitoso LEGO WeDo. En esta ocasión la propuesta se centra en el trabajo en Educación Primaria con las ciencias añadiendo algunas prestaciones muy interesantes:

- Es inalámbrico: Vía Bluetooth
- Diseño renovado: las piezas tienen formas y colores realmente atractivos
- A través de su propuesta de actividades aborda contenidos curriculares como las ciencias naturales, la física, la tierra y el espacio y la ingeniería.
- Vex
En 1996 inicia la actividad Innovation First International, una empresa privada de Estados Unidos fundada con la creencia de que para producir diseños de productos simples y elegantes, la innovación es necesaria muy temprana en este proceso.

Empezó produciendo la electrónica para robots terrestres autónomos y con los años inició su actividad dentro del mundo educativo. De ahí surgió una de sus subsidiarias VEX Robotics Inc., un proveedor de productos de robótica educativa muy competitivos tanto para escuelas, universidades y grupos de robótica de todo el mundo. (Página web oficial de Vex Robotics). VEX Robotics Inc. presenta en la actualidad tres líneas de productos diferentes:

- **VEX IQ**: Una revolución en la educación STEM para los estudiantes de primaria y secundaria. Sistema de montaje basado en piezas de plástico que no necesita herramientas. Programa tus montajes con Modkit, una herramienta muy parecida al popular y sencillo Scratch.

- **VEX EDR**: ganador del Premio de Mejor Innovación en el CES 2006, fue diseñado y construido desde cero para ser una plataforma asequible, accesible y escalable utilizada para enseñar la ciencia, la tecnología, la ingeniería y la enseñanza de las matemáticas (STEM) en todo el mundo. La línea EDucational Robotics combina piezas metálicas y plástico con unos acabados muy profesionales, haciendo honor a la actividad de Innovation First International. Ideal para estudiantes de secundaria, ciclos formativos y universidad.

- **VEX pro**: Como su nombre indica se trata de una línea más orientada a los profesionales de la robótica. Por el momento este producto no se comercializa en España.

El desarrollo de herramientas tecnológicas para la educación en la primera década de este siglo se ha manifestado no sólo en el desarrollo de software y hardware; sino también en la transformación de las dinámicas asociadas a los procesos de enseñanza aprendizaje mediados por las tecnologías de información y de comunicaciones.
La implementación del software para la educación no es solo para lograr diseños virtuales y físicos. El objetivo de estos métodos tecnológicos es que el estudiante logre la construcción de sus habilidades y conocimientos que les ofrezca la posibilidad de aplicar los aprendizajes logrados a su cotidianidad y a las situaciones que requieren una respuesta desde su disciplina o áreas de estudio.

2.9. Perspectivas Teóricas

Dentro de las perspectivas teóricas que se han propuesto se encuentran el modelo de Jean Piaget y el modelo de procesamiento de la información.

2.9.1 Teorías Biológicas y Fisiológicas

Existen numerosos modelos psicológicos del desarrollo cognitivo propuestos, pero han sido muy pocos los que han correlacionado el desarrollo cognitivo y la maduración cerebral. Dentro de estas teorías, una de las más reconocidas está basada en los conceptos de Luria (1966) sobre el desarrollo de los sistemas funcionales.

Un sistema funcional es un grupo de estructuras cerebrales que participan en una función particular, es decir, que una misma región cerebral puede ser parte de varias funciones cognitivas diferentes.

Según Luria se pueden distinguir tres unidades funcionales cerebrales:

- La primera unidad de alertamiento se desarrolla entre el nacimiento y el primer año de vida. Está conformada por la formación reticular y sus conexiones con la corteza y el sistema límbico. La función básica de esta primera unidad que generar un estado de activación en el resto del cerebro. Este estado de activación es conocido como el “tono”.
• La segunda unidad funcional de Luria analizaría los estímulos del medio exterior está compuesta por las áreas posteriores primarias y de asociación de la corteza cerebral. Las áreas primarias alcanzan un pico de desarrollo cercano a los doce meses y las áreas secundarias de asociación alrededor de los cinco años; las áreas terciarias completarían su desarrollo entre los siete y los doce años. (Rosselli, 1988).

• La tercera unidad funcional de acuerdo con el modelo de Luria, se integra por los lóbulos frontales que desempeñan la función motora y ejecutiva: acción y planeación.

Luria, del mismo modo que planteaba Jackson, propone dentro del desarrollo ontogenético cerebral dos ejes del desarrollo; uno que se va de las estructuras inferiores a las superiores, es decir, del tallo cerebral hacia la corteza, y otro que avanza de las estructuras corticales posteriores a las anteriores. El otro eje del desarrollo es la lateralización progresiva de funciones donde se diferencian las funciones entre los dos hemisferios.

2.9.2. Teorías Psicológicas

La robótica está fuertemente vinculada con las teorías del constructivismo y la pedagogía activa. La teoría constructivista de Jean Piaget (1976) asegura que el aprendizaje no es resultado de una transferencia de conocimiento, sino que es un proceso activo de construcción del aprendizaje basado en experiencias (Acuña, 2004).

El constructivismo sostiene que el aprendizaje se manifiesta a medida que el estudiante interactúa con su realidad y realiza concretamente actividades sobre ella.

Desde el punto de vista de la teoría constructivista, el uso de herramientas tecnológicas en el aula de clase aporta una manera alternativa de aprender y crea en los estudiantes experiencias para la construcción de conocimientos (Hernández, 2008).
Los ambientes de aprendizaje generados por la robótica educativa están basados fundamentalmente en la acción de los estudiantes. Los proyectos de robótica educativa posicionan al estudiante en un rol activo y protagónico en su propio proceso de aprendizaje pues permiten al estudiante pensar, imaginar, decidir, planificar, anticipar, investigar, hacer conexiones con el entorno, inventar, documentar y realimentar a otros compañeros; en la vivencia de todo este proceso, desarrollarán diversos conocimientos y habilidades esenciales para desenvolverse eficientemente ante los retos y desafíos que impone el mundo actual (Acuña, 2004).

2.9.2.1. Teoría de Ausubel

La teoría de Ausubel es cognitiva. Explica el proceso de aprendizaje según el cognitivismo. Se preocupa de los procesos de comprensión, transformación, almacenamiento y uso de la información envueltos en la cognición.

Esta teoría se acopla a los puntos de vista actuales de la filosofía constructivista que considera a la ciencia como algo dinámico, no estático, basado en la creencia de que nosotros estructuramos nuestro mundo a través de las percepciones de nuestras experiencias.

Según este enfoque el conocimiento es considerado como flexible y evoluciona basado en nuevos hallazgos.

Para Ausubel nuevas ideas e informaciones pueden ser aprendidas y retenidas en la medida en que conceptos relevantes o adecuados e inclusivos se encuentren apropiadamente claros y disponibles en la estructura cognitiva del individuo y sirvan, de esta forma, de anclaje a nuevas ideas y conceptos. La teoría de Ausubel está basada en el supuesto de que las personas piensan con conceptos. Un concepto comunica el significado de alguna cosa.
La adquisición, por parte del alumno, de un conocimiento claro, estable y organizado es más que el principal objetivo de enseñanza en el aula, ya que, una vez adquirido, ese conocimiento pasa a ser el factor más importante que influencia la adquisición de nuevos conocimientos en la misma área.

2.9.3. Teorías sobre la Robótica

En un mundo caracterizado por la hegemonía de la ciencia y la tecnología, la transmisión global de enormes cantidades de información, la realización de tareas rutinarias por ordenadores y robots y los contactos de todo tipo y cada vez mayores entre poblaciones diversas. Quienes logren cultivar esta pentarquía de mentes tienen más probabilidades de prosperar y salir adelante (Gardner, 2005, 226).

2.9.3.1. Máquinas de aprendizaje

Uno de los autores fundamentales para comprender la Psicología hoy en día es B.F. Skinner. Gracias a el surge una de las teorías más trascendental para la Psicología: el condicionamiento operante. El condicionamiento operante es un procedimiento de aprendizaje que se basa en que la probabilidad de que se dé una respuesta determinada depende de las consecuencias esperadas. Esta forma de aprendizaje se ha difundido a múltiples ciencias que refuerzan el proceso de enseñanza.

El ámbito en donde Skinner estaba muy interesado en implantar sus teorías, era la educación. Uno de los inventos que lo hizo más famoso en el ámbito de la Psicología experimental, es la Caja de Skinner. Estas “cajas” eran unas cajas metálicas, en las cuáles podía haber múltiples estímulos: botones, luces, que reproducían sonidos, etc. El investigador introducía palomas u otros animales que aprendían a pulsar esos botones o a hacer ciertas conductas cuando veían aparecer la luz. A cambio, en la propia caja, había un dispensador de
comida que premiaba esa conducta que realizaba el animal. De esta forma Skinner probaba e investigaba los principios del aprendizaje que tanto han influido en la Psicología. (Pellón, 2013).

Tras observar que los niños en el colegio tenían una metodología de enseñanza muy pobre, ya que los niños no hacían más que repetir cuentas sin parar. Ni siquiera obtenían retroalimentación de sus resultados, diseñó un dispositivo para poner encima de los pupitres y que tenía como finalidad facilitar el estudio. De esta forma, se presentaba a los estudiantes en una lámina los diferentes problemas, y debían marcar la respuesta que consideraban correcta. De forma inmediata, desplazando la lámina, se descubría si se había acertado o no.

Aunque estas máquinas como tales no siguen vigentes en la actualidad, sí han servido como aporte a otros inventos y formas de aprendizaje basadas en el ensayo-error y en la autonomía del alumno. Este método se puede desarrollar en las clases de robótica donde los estudiantes construyen objetos tecnológicos, asumen diferentes roles, ensayan y comprueban sus propias soluciones a problemas concretos fundamentales para la creación del conocimiento y el desarrollo de nuevas destrezas.

2.9.3.2. Teoría basada en problemas (James E. Jones)

Se plantea un problema como medio para que los estudiantes encuentren respuesta o solución, de forma que al resolverlo tienen que buscar, entender, integrar conceptos básicos del contenido del problema.
2.10. Marco Contextual

2.10.1 Robótica Academy Dominicana

Robotic Academy Dominicana –ROADOM-, SRL es una empresa consultora en el área de la capacitación y entrenamiento en educación Tecnológica, Robótica Educativa e Ingeniería, a la vez contamos con la venta de equipos tecnológicos.

Los programas diseñados por ROADOM están hechos para que cualquier persona sin importar su edad, género o condición especial que pueda entender, analizar y construir robots mediante el uso e herramienta de diseño asistido por computadora, experimentación, conocimientos básicos en Mecánica, Electrónica y Programación.

Robotic Academy Dominicana utiliza tecnología basada en investigación y métodos de enseñanza STEM para proveer educación de alta calidad y asequible para el público en general. Las soluciones que Robotic Academy Dominicana ofrece en los talleres contribuyen al desarrollo de habilidades y competencias del estudiante.

Nuestros programas a la vez ayudan y garantizan el aprendizaje al estudiante para así prepararse para buscar mejoras y soluciones aplicables en un mundo donde la economía global sufre constantes cambios emergentes.

Misión

Somos una Academia que fomenta la creatividad sobre la base del binomio ciencia y tecnología con la aplicación de metodologías activas en la educación básica, media y superior, promoviendo la investigación, innovación y desarrollo de tecnologías en los diversos niveles del aprendizaje.
Visión

Ser la principal institución de la República Dominicana en asesoría y enseñanza de tecnología para alumnos desde una temprana edad a través del uso de herramientas tecnológicas innovadoras.

Valores

Los valores sobre los que se sostiene nuestra empresa para brindar un servicio diferenciado son:

- Trabajo en equipo: Promoviendo y apoyando el trabajo multidisciplinario.
- Servicio: Brindando un servicio altamente calificado y siempre cumpliendo con nuestros compromisos, siempre responsables de nuestro rendimiento, basándonos en una gran voluntad de servicio por y para nuestros estudiantes.
- Continúa Actualización e Innovación: Ofrecemos lo último en tecnología haciendo uso de estrategias de aprendizaje innovadoras para dar apoyo y servicio único a nuestros estudiantes.
- Integridad y Ética: Respetamos y cumplimos nuestra normativa interna y todo lo que rodea a nuestra empresa.
- Formación: La empresa se preocupa de la formación continua de nuestro personal.

Servicios

- Robotic Lab:
 Es un Proyecto educativo que tiene por objetivo despertar el interés de los más jóvenes por la ciencia, la tecnología, la ingeniería y las matemáticas.

- Robotic School:
 Basado en el plan de estudios, ofrece clases de enriquecimiento en las tardes y como programa curricular.
• Drobot team:

DROBOT TEAM (Dominican Republic Robotic Team)

Es el nombre del equipo de Robotic Academy Dominicana. Ser parte de DROBOT TEAM significa que los participantes son preparados para competencias ya preestablecidas anualmente.

• Roboticamp:

Es un campamento de verano dedicado a niños y niñas de 7 a 15 años de edad. A través de este campamento se busca desarrollar habilidades.

• Roboticumple:

Es una manera divertida y educativa de celebrar el cumpleaños de sus niños, en el cual ellos podrán construir su propio robot mientras se les enseña los conceptos.

• Robotic Adventure Day:

Consiste en la oportunidad que ofrece ROBOTIC ACADEMY DOMINICANA a grupos de instituciones o público en general, en visitar y utilizar el ROBOTIC LAB.

2.10.2. Colegio Escuela Nueva

Entidad dedicada a promover la excelencia académica y la trascendencia personal, formando hombres y mujeres creativos, críticos, cooperadores y responsables; capaces de asumir compromisos solidarios y comunitarios contribuyendo a la construcción de una sociedad más justa y participativa.
Misión

Colegio Escuela Nueva, una institución de administración privada desde el nivel inicial hasta el nivel medio, que busca promover una educación integral de calidad, formando individuos líderes capaces de asumir retos y responder a las necesidades de la sociedad de manera responsable, crítica, creativa y cooperadora.

Nuestro centro busca que sus estudiantes trasciendan asumiendo compromisos solidarios y comunitarios del país de manera que contribuyan a la construcción de una sociedad más justa y participativa.

Visión

El Colegio Escuela Nueva, aspira a ser una institución de trascendencia educativa donde sean privilegiados los procesos de pensamiento inteligente frente a los de memorización mecánica, propiciando un ambiente de colaboración, trabajo solidario y liderazgo efectivo, apoyado de estrategias pedagógicas actualizadas.

Valores

- Honestidad
- Integridad
- Responsabilidad
- Empatía
- Ética
- Tolerancia
- Amor
Servicios

- Educación inicial, primaria y secundaria
- Ambiente físico amplio con áreas separadas para cada nivel y con gran diversidad de materiales.
- Personal altamente calificado en todas las áreas
- Seguimiento personalizado a los y las estudiantes tanto en sus procesos personales como intelectuales.
- Inglés desde pre-primario a cargo del instituto de lenguas y tecnologías aplicadas a la educación (ILTAE)
- Talleres de arte para todos los niveles (música, fotografía, guitarra, diseño gráfico, producción, y dirección de cortos, crítica literaria, artes plásticas, teatro, psicomotricidad, danza y educación física).
- Biblioteca con extensa colección de libros y materiales de consulta.
- Programa de plan lector, para incentivar el amor por la lectura.
- Programa de teatro musical para el segundo ciclo de secundaria.
- Cursos de informática para el nivel secundario a cargo de la Universidad Iberoamericana (UNIBE).

2.11. Idea a Defender (Hipótesis)

El fortalecimiento de las Funciones Ejecutivas en edades de 6-12 años es importante para el buen desenvolvimiento tanto en lo cognitivo como en lo conductual. Siendo este tema uno de los más investigados en los últimos años por su estructura crítica en el desarrollo del sistema nervioso, cuya función, anatomía y conexiones ha sido objeto de innumerables estudios a lo largo de los últimos años, aunque muchos de los procesos en los que se encuentra involucrado están aún por definir.
Se hace relevante investigar y comprobar como ayuda la Robótica a fortalecer estas Funciones Ejecutivas. Nos hemos planteado este estudio, pues consideramos que es de utilidad para la sociedad dominicana en la cual se está implementando cada vez más la robótica hasta el punto que el Ministerio de Educación ha iniciado un programa de robótica en las escuelas públicas.

Los datos arrojados aportarán al conocimiento del efecto psicológico de la robótica en el desarrollo cognitivo de los niños, con lo que se contribuirá tanto a la neuropsicología, psicología clínica y del desarrollo como a la psicología del aprendizaje también a la sicopedagogía y a la pedagogía. Con la información aportada se podrán hacer mejoras en la metodología utilizada por la robótica para mejorar las áreas que resulten deficitarias en los niños, tanto a nivel terapéutico para poder encontrar y crear intervenciones para patologías neuropsicológica en el área prefrontal, evitando los principales cuadros clínicos con manifestaciones de tipo disejecutivo, tales como: trastorno obsesivo-compulsivo, psicopatía, esquizofrenia, entre otros. Como también en el área educativo haciendo referencia en el trastorno por déficit de atención e hiperactividad y autismo.

Al momento no se han realizado estudios con las características del que nos planteamos en República Dominicana, se han realizado investigaciones similares en otros países pero luego de una revisión bibliográfica exhaustiva en la internet y en SCIELO no encontramos estudios que se plantearan el uso de la Evaluación Neuropsicológica de las Funciones Ejecutivas en Niños (ENFEN).
2.12. Operacionalización de variables

<table>
<thead>
<tr>
<th>Objetivos</th>
<th>Variables</th>
<th>Indicadores</th>
<th>Fuentes</th>
<th>Escalas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratificar los niveles interpretativos de la prueba ENFEN marca valores relevantes en los grupos de estudiantes.</td>
<td>Niveles interpretativos de la prueba ENFEN.</td>
<td>Valor porcentual obtenido en la evaluación ENFEN.</td>
<td>Evaluación Neuropsicológica de las Funciones Ejecutivas en Niños (ENFEN).</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Reconocer las características se manifiestan en los niveles interpretativos de la prueba ENFEN que se identificaron con valores relevantes en los grupos de estudios.</td>
<td>Las características que se manifiestan en los niveles interpretativos de la prueba ENFEN.</td>
<td>Valor porcentual obtenido en la evaluación ENFEN.</td>
<td>Evaluación Neuropsicológica de las Funciones Ejecutivas en Niños (ENFEN).</td>
<td>Ordinal</td>
</tr>
</tbody>
</table>

CAPITULO III – DISEÑO METODOLÓGICO

3.1. Tipo de investigación

La siguiente investigación es de corte no experimental pues no se realizó manipulación deliberada de las variables. Se analizó una situación o fenómeno en un tiempo determinado, además, de diversas variables de estudio. Se midieron los indicadores conductuales de las funciones ejecutivas, sin manipularlas.
La investigación es de tipo transversal ya que la información sobre los indicadores conductuales de las funciones ejecutivas en niños inscritos en clases de robótica y niños de clases секulares, se recogió en un solo momento o periodo de tiempo, el periodo Abril-Junio 2018.

3.2. Metodología

La presente investigación tuvo la finalidad de aprovechar las fortalezas que brindan tanto la investigación cuantitativa, midiendo el fortalecimiento de las funciones ejecutivas en dos grupos independientes seleccionados, así como de forma cualitativa, analizando todas las variables resultantes que arrojaron las informaciones necesarias para responder a nuestras preguntas y alcanzar nuestros objetivos de investigación para la conclusión de la misma.

Los métodos que se utilizaron para estos fines fueron: deducción, inducción, análisis y síntesis. La deducción nos permitió partir de todo el aspecto general aterrizando en lo particular, enfocando las informaciones compiladas al tema central de este trabajo investigativo.

Es además un trabajo inductivo ya que se internalizó toda la data conseguida en general para darle una particularidad según nuestro juicio clínico y crítico. Siguiendo nuestra metodología elegida, procedimos a realizar un proceso de abstracción, tomando los datos cuantitativos para analizarlos a la luz de las investigaciones que le precedieron en torno al mismo tema y concluir en forma de síntesis, explicando y realizando las recomendaciones pertinentes.

3.3. Técnicas de Recolección de Datos

Las técnicas de recolección de datos que se utilizan en esta investigación son, consentimiento informado y la prueba neuropsicología ENFEN.

Se utilizó un consentimiento informado antes de la administración de la prueba seleccionada para esta investigación, Evaluación Neuropsicológica de las Funciones Ejecutivas
en Niños (ENFEN). Esta data resultante de la administración de la prueba sobre las funciones ejecutivas ENFEN, fueron comparados con los datos contenidos en cada expediente.

3.4. Descripción y Validación de los instrumentos

3.4.1 Descripción de la prueba

El instrumento que se utilizó para la recolección de la información para la evaluación neuropsicológica de las Funciones Ejecutivas fue la prueba ENFEN (Evaluación Neuropsicológica de las Funciones Ejecutivas en Niños), es una nueva batería para evaluar el desarrollo madurativo global de los niños entre 6 y 12 años de edad, incidiendo especialmente en las funciones ejecutivas controladas por el área prefrontal. La ENFEN permite evaluar la madurez neuropsicológica del niño mediante cuatro pruebas: Fluidez, Senderos, Anillas e Interferencia. Todas ellas miden diferentes componentes de las Funciones Ejecutivas que forman la esencia de la actividad mental superior del ser humano.

La aplicación de la prueba es individual, la duración es variable, aproximadamente 20 minutos. Con una baremación de puntuaciones directas y decatipos por grupos de edad entre los 6 y 12 años, ambos inclusive.

3.4.2. Propiedades Psicométricas

El primer paso para realizar la versión definitiva de la ENFEN fue la realización de un estudio piloto previo en el objetivo de depurar y mejorar su estructura y contenido. El estudio se realizó durante los años 2004-2005 (Portellano, Zumarraga y Martinez Arias, 2005). La muestra que se utilizo estaba formada 223 sujetos con edades comprendidas entre los 6 y los 12 años.

La edad media de la muestra fue de 9,47 años (desviación típica=1,90). El número de varones en la muestra fue de 87, con una edad media de 9,61 niños y el de mujeres fue de 136,
con una media de edad de 9,31 años. La selección de la muestra se realizó en tres centros escolares de la comunidad autónoma de Madrid. Todos los participantes lo hicieron de manera voluntaria, sin que se excluyera ningún caso.

En el diseño inicial, la ENFEN constaba de 5 pruebas para evaluar las funciones ejecutivas: Inhibición motora, Fluidez, Senderos, Anillas e interferencia. En la versión definitiva se respetaron todas las pruebas, con la excepción de la prueba inhibición motora, que fue eliminada.

3.5. Procedimientos

Para iniciar el proceso de investigación se tuvo que agotar varios procesos. En primer lugar, fue necesario contar con el permiso de la Academia de Robótica, lugar donde nació la necesidad de la investigación. Para luego contar también con el permiso del colegio escuela nueva lugar donde se evaluarían los niños de las clases seculares.

Luego de que ambos lugares aceptaron, fue necesario seleccionar a treinta y ocho participantes de 6 a 12 años que estuvieran en robótica y el grupo control que no estuviera en clases de robótica, durante el periodo Abril- Junio 2018.

Se tuvo una reunión previa con los padres de estos pacientes donde se les explicaba el propósito de la investigación y lo que el proyecto de investigación proponía. Posteriormente, los padres llenaron un consentimiento informado donde se le autorizó a los investigadores poder pasar las pruebas, guardando en primera instancia la confidencialidad de los pacientes evaluados y de los resultados, y cuidando el proceso en términos generales según dicta el Código de Ética y Disciplina del Colegio Dominicano de Psicólogos (CODOPSI).

Finalizado el proceso de aplicación de la evaluación se corrigió de forma manual, con el libro de correcciones ENFEN. Por último, luego de obtener los perfiles se procedió a tabular los resultados, a graficarlos y a posteriormente interpretarlos y analizarlos.
3.6. Universo y Muestra

Treinta y ocho niños de 6 a 12 años de edad, de una academia de robótica, como también niños de clases seculares. Divididos entre dieciocho niños de clases de robótica y veinte niños de clases seculares.

De este universo que comprende unos cien niños en cada trimestre divididos en horarios y cursos diferentes, pero que en cada grupo de clases no se admiten más de unos veinte niños, se tomó una muestra mediante muestreo aleatorio no probabilístico y mediante el instrumento de recolección de la información apto para ser completado por personas de su edad, proporcionarán la información que será analizada con el objetivo de contestar a las preguntas de la presente investigación.

Tomamos la muestra de forma aleatoria con los parámetros establecidos antes de la investigación.

3.6.1. Criterios de Inclusión

- Niños de 6-12 años
- Niños que hayan estado en clases de Robótica
- Niños que nunca hayan estado en Robótica
- Niños del sexo masculino
- Niños que hayan estado en el periodo de clases abril-junio2018
3.6.2. Criterios de Exclusión

- Niños que sean mayores de 12 año
- Niños que no sean del año de trabajo que esta seleccionado para la investigación.
- Niños que no hayan estado en clases de robótica por un período de 6 semanas

3.7. Plan de análisis de los datos

El desglose y explicación de los datos se realizó utilizando los insumos arrojados por la investigación, antecedentes, historia, entre otros. Siguiendo el orden de las preguntas y objetivos de investigación. Esto es: niños de 6 a 12 años que asisten a clases de robótica y niños en clases seculares de la misma edad durante el periodo de abril-junio 2018.

Capítulo IV – PRESENTACIÓN Y ANÁLISIS DE LOS RESULTADOS

La muestra estadística de los casos extraídos de forma aleatoria de una población de 60 niños, consistente en 18 niños, que asisten a clases de robótica, y 20 niños de clases seculares en el periodo de escolar abril-junio 2018. 38 varones (100%). A partir de la aplicación de la prueba neuropsicológica ENFEN.

Se presentan los datos por el orden de las preguntas de investigación y objetivos planteados en este documento en el primer capítulo.

A continuación, se presentarán los resultados y el análisis de los resultados obtenidos al pasarles el instrumento ENFEN sobre las Funciones Ejecutivas a los treinta y ocho niños de la muestra seleccionada.
4.1. Presentación de la Data Cuantitativa y Cualitativa arrojada por la Investigación

Tabla I. Frecuencia de edades por grupos evaluados.

<table>
<thead>
<tr>
<th>Edades</th>
<th>Grupo Robótica</th>
<th>Grupo Control</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>10.5%</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>34.2%</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>31.6%</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10.5%</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5.3%</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7.9%</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>20</td>
<td>38</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Edades de los treinta y ocho participantes evaluados en la prueba ENFEN.

Grafico I. Sobre la frecuencia de las edades de los pacientes evaluados en la prueba ENFEN.

Del 100% de los participantes evaluados, el 10.5% se encuentra en la edad de 6 años, mientras que el 34.2% se encuentra en la edad de 7 años, por otro lado el 31.6% se encuentra en
la edad de 8 años, los de 10 años tienen un 10.5%, los de 11 años tienen un 5.3% y por último los de 12 años un 7.9%.

Tabla II. Niveles interpretativos de la prueba ENFEN que marcan valores relevantes en los grupos.

<table>
<thead>
<tr>
<th>Pruebas</th>
<th>Grupo Robótica</th>
<th>Grupo Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidez Fonológica</td>
<td>6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Fluidez Semántica</td>
<td>5.6</td>
<td>5.3</td>
</tr>
<tr>
<td>Sendero Gris</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Sendero a color</td>
<td>5.7</td>
<td>5.1</td>
</tr>
<tr>
<td>Anillas</td>
<td>7.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Interferencia</td>
<td>6.1</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Fuente: Objetivo de investigación no.1 sobre los niveles interpretativos más relevantes.
Grafico 2. Frecuencia de los niveles interpretativos de la prueba ENFEN que marcan valores relevantes en los grupos.

El grupo de robótica obtuvo una mayor puntuación en todas las pruebas, siendo las anillas la de mayor relevancia a nivel de porcentaje obteniendo un 7.3% otorgándole en la descripción ENFEN como medio alto. Solo se puede ver en la evaluación que más se destacan ambos grupos es sendero gris, obteniendo el grupo de robótica un 7.0% y el grupo control un 6.8% dado que es similar a tareas que normalmente los niños realizan en su trayectoria escolar (unir puntos numerados para formar una figura) existiendo un aprendizaje previo que podría favorecer el resultado.

En tanto que en sendero a color la tarea es nueva y debe ser aprendida. El grado de dificultad es mayor, se debe alternar la secuencia de colores, con exigencia de más compromiso en la inhibición, flexibilidad mental y memoria de trabajo.
Tabla III. Las características que se manifiestan en los niveles interpretativos de la prueba ENFEN con los valores más elevados en los grupos.

<table>
<thead>
<tr>
<th>Grupo Robótica</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niveles interpretativos más elevados</td>
<td>Características</td>
</tr>
<tr>
<td>Anillas</td>
<td>Flexibilidad mental</td>
</tr>
<tr>
<td></td>
<td>Memoria de trabajo</td>
</tr>
<tr>
<td></td>
<td>Coordinación visomotora</td>
</tr>
<tr>
<td></td>
<td>Capacidad para programas la conducta</td>
</tr>
<tr>
<td></td>
<td>Habilidad para desarrollar y mantener solución a nuevos problemas</td>
</tr>
<tr>
<td></td>
<td>Capacidad de abstracción</td>
</tr>
<tr>
<td></td>
<td>Capacidad de planificación</td>
</tr>
<tr>
<td>Interferencia</td>
<td>Atención selectiva</td>
</tr>
<tr>
<td></td>
<td>Atención sostenida</td>
</tr>
<tr>
<td></td>
<td>Capacidad para inhibir</td>
</tr>
<tr>
<td></td>
<td>Resistencia a la interferencia</td>
</tr>
<tr>
<td></td>
<td>Flexibilidad Mental</td>
</tr>
<tr>
<td></td>
<td>Capacidad para clasificar</td>
</tr>
</tbody>
</table>

Fuente: Objetivo de investigación no. 2. Sobre los niveles interpretativos más elevados en la prueba ENFEN en los grupos.
Los valores elevados dentro de los grupos, se pudieron identificar que el grupo robótica obtuvo un mayor porcentaje dentro de los niveles interpretativo de la prueba ENFEN, con una puntuación en anillas de 7.3% y en interferencia un 6.1%. Mientras que el grupo control obtuvo en anillas un 6.1% y en interferencia un 4.8%.

Objetivo No.3. Determinar cuáles técnicas de abordaje neuropsicológicas caracterizan un programa de fortalecimiento de las funciones ejecutivas según los resultados arrojados por los grupos de estudio mediante la prueba ENFEN.
4.2. Programa De Intervención Fortalecimiento De Las Funciones Ejecutivas

Introducción

Las funciones ejecutivas son la esencia de nuestra conducta, son la base de los procesos cognitivos y constituyen el elemento con mayor valor diferencial entre el ser humano y las restantes especies. Los primeros cinco años de vida son críticos en el desarrollo de las funciones ejecutivas. La misma sigue un proceso de desarrollo que abarca un amplio período temporal, alrededor de los 12 años la maduración de la región prefrontal es similar a la del adulto, se estima que las funciones ejecutivas se consolidan alrededor de los 16 años. Por lo tanto fortalecer estas funciones resulta esencial para el buen funcionamiento, social, académico y personal de los niños, niñas y adolescentes. Permiéndoles programar las acciones dirigidas al logro de un objetivo de modo eficiente y para resolver problemas complejos, para alcanzar sus metas.

El motivo principal de este programa es fortalecer las funciones ejecutivas con estrategias de enseñanzas innovadoras y adaptadas al niño, niña y adolescente.

4.2.1. Objetivo General:

Realizar un programa de intervención de fortalecimiento de las funciones ejecutivas para niños de 6 a 12 años, a través de actividades lúdicas (robótica) teniendo en cuenta el desarrollo neuropsicológico, para poder incrementar habilidades cerebrales que favorecen el aprendizaje.

4.2.2. Objetivos específicos:

Optimizar el proceso de aprendizaje, por medio de diversas actividades lúdicas, basadas en las clases de robótica, con el fin de incrementar habilidades atencionales, planeación, flexibilidad cognitiva, abstracción y memoria de trabajo.
Fortalecer y prevenir futuras alteraciones a nivel atencional y de funciones ejecutivas, a través de la estimulación adecuada, favoreciendo los procesos de pensamiento en los niños y niñas en la etapa de la niñez temprana, en la segunda infancia y en la adolescencia.

Orientar adaptaciones curriculares a centros educativos privados y públicos sobre la metodología de enseñanza STEM, permitiendo el logro importante para el proceso cognitivo de los estudiantes.

Desarrollo:

➢ Corto Plazo

Meta: Implementar un programa piloto de fortalecimiento de las funciones ejecutivas que incluya educación robótica en un centro educativo que no imparta un programa de robótica

Técnica:

Restauración: pretenden mejorar los puntos débiles observados en el perfil neuropsicológico mediante el entrenamiento, la estimulación o la ejercitación continuada.

El entrenamiento por restauración pretende activar las funciones más afectadas para propiciar, el éxito escolar o de la vida diaria.

Sustitución: se utiliza cuando una determinada funcion o dominio cognitivo ha quedado abolido en su totalidad. En este caso es necesario activar funciones o áreas complementarias que estar preservadas como mecanismo de compensación. Las estrategias de sustitución pretenden intensificar y mejorar las habilidades cognitivas perdidas activando los puntos fuertes que se encuentran preservados en el perfil neuropsicológico.

Tiempo: 1 año
Mediano Plazo

Meta: Promocionar en niveles de comunicación radial y televisiva las ventajas del fortalecimiento de las funciones ejecutivas mediante la educación robótica

Largo Plazo

Meta: En un periodo de 5 años haber desarrollado una red de fortalecimiento de las funciones ejecutivas en centros educativos y psicológicos de la provincia de Santo Domingo.

Técnica:

Executive Plus Model una adaptación del Attention Process Training – II (APT-II) de Gordon, Cantor, Ashman y Brown. El entrenamiento en técnicas de regulación emocional consta de tres partes:

- Observación de las conductas, emociones, pensamientos y manifestaciones fisiológicas que se desencadenan como respuesta a situaciones problemáticas y como interfieren en la resolución de problemas.
- Análisis de los precursores que condicionan conducta mal adaptativa en situaciones problemáticas.
- Entrenamiento en estrategias de auto-regulación emocional
Se aplicó la prueba de normalidad del programa SPSS para contrastar la normalidad de un conjunto de datos. Este contraste se realizó para comprobar si se verifica la hipótesis de normalidad necesaria para que el resultado de algunos análisis sea fiable. Para comprobar la hipótesis nula de que las muestras han sido extraídas de una población con distribución de probabilidad normal se puede realizar un estudio gráfico y/o analítico.
Grafico 4. Prueba de normalidad entre ambos grupos.

Todos los datos de ambas muestras provienen de una distribución normal.
Tabla V. Prueba T. Verificación si existe diferencia significativa.

Prueba (t) de muestras independientes

<table>
<thead>
<tr>
<th></th>
<th>Prueba de Levene de igualdad de varianzas</th>
<th>prueba t para la igualdad de medias</th>
<th>95% de intervalo de confianza de la diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Fluidez Fonológica</td>
<td>0.745</td>
<td>0.394</td>
<td>1.021</td>
</tr>
<tr>
<td>No se asumen varianzas iguales</td>
<td>1.030</td>
<td>35.943</td>
<td>0.310</td>
</tr>
<tr>
<td>Fluidez Semántica</td>
<td>2.181</td>
<td>0.148</td>
<td>0.534</td>
</tr>
<tr>
<td>No se asumen varianzas iguales</td>
<td>0.545</td>
<td>33.290</td>
<td>0.589</td>
</tr>
<tr>
<td>Sendero Gris</td>
<td>0.894</td>
<td>0.351</td>
<td>0.279</td>
</tr>
<tr>
<td>No se asumen varianzas iguales</td>
<td>0.283</td>
<td>35.110</td>
<td>0.779</td>
</tr>
<tr>
<td>Sendero a color</td>
<td>1.314</td>
<td>0.259</td>
<td>1.079</td>
</tr>
<tr>
<td>No se asumen varianzas iguales</td>
<td>1.100</td>
<td>33.753</td>
<td>0.279</td>
</tr>
<tr>
<td>Anillas</td>
<td>0.004</td>
<td>0.951</td>
<td>2.539</td>
</tr>
<tr>
<td>No se asumen varianzas iguales</td>
<td>2.544</td>
<td>35.800</td>
<td>0.015</td>
</tr>
<tr>
<td>Interferencia</td>
<td>1.462</td>
<td>0.235</td>
<td>1.958</td>
</tr>
<tr>
<td>No se asumen varianzas iguales</td>
<td>1.981</td>
<td>35.551</td>
<td>0.055</td>
</tr>
</tbody>
</table>

Fuente: Programa Statistical Package for the Social Science (SPSS).

H₀: NO existe diferencia significativa entre la media de las evaluaciones del Grupo Robótica y la media de las evaluaciones del Grupo Control en la prueba T Student.
Tabla VI. Prueba Fluidez Fonológica de los participantes evaluados con la ENFEN.

<table>
<thead>
<tr>
<th>BASE</th>
<th>Recuento</th>
<th>Total</th>
<th>GRUPO ROBOTICA</th>
<th>GRUPO CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Recuento</td>
<td>4</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Recuento</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>11.1%</td>
<td>5.0%</td>
</tr>
<tr>
<td>4</td>
<td>Recuento</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>16.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>5</td>
<td>Recuento</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>13.2%</td>
<td>5.6%</td>
<td>20.0%</td>
</tr>
<tr>
<td>6</td>
<td>Recuento</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>26.3%</td>
<td>33.3%</td>
<td>20.0%</td>
</tr>
<tr>
<td>7</td>
<td>Recuento</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>13.2%</td>
<td>11.1%</td>
<td>15.0%</td>
</tr>
<tr>
<td>8</td>
<td>Recuento</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>5.3%</td>
<td>5.6%</td>
<td>5.0%</td>
</tr>
<tr>
<td>9</td>
<td>Recuento</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>13.2%</td>
<td>16.7%</td>
<td>10.0%</td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>5.6</td>
<td>6.0</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Fuente: Programa SPSS.

Podemos visualizar en este cuadro los resultados de ambos grupos (grupo robótica y grupo control), obtenidos en la prueba fluidez fonológica. Siendo el recuento la cantidad de niños evaluado en ese grupo y fila el total en porciento.
Grafico 6. Prueba Fluidez Fonológica de los participantes del grupo robótica y grupo control evaluado con la ENFEN.

Gráfico Q-Q normal de Fluidez Fonológica para GRUPO CONTROL

Gráfico Q-Q normal de Fluidez Fonológica para GRUPO ROBOTICA
Grafico 6. Ambos grupo en estas graficas obtuvieron una calificación normal-esperado dentro de la prueba TStudent.

Tabla VIII. Prueba Fluidez Semántica de los participantes evaluados con la ENFEN.

<table>
<thead>
<tr>
<th>Fluidez Semántica</th>
<th>GRUPOS</th>
<th>BASE</th>
<th>GRUPO ROBOTICA</th>
<th>GRUPO CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recuento</td>
<td>Total</td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>Recuento</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>15.0%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Recuento</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>11.1%</td>
<td>10.0%</td>
</tr>
<tr>
<td>4</td>
<td>Recuento</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>16.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>5</td>
<td>Recuento</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>13.2%</td>
<td>16.7%</td>
<td>10.0%</td>
</tr>
<tr>
<td>6</td>
<td>Recuento</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>26.3%</td>
<td>22.2%</td>
<td>30.0%</td>
</tr>
<tr>
<td>7</td>
<td>Recuento</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>23.7%</td>
<td>27.8%</td>
<td>20.0%</td>
</tr>
<tr>
<td>8</td>
<td>Recuento</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>2.6%</td>
<td></td>
<td>5.0%</td>
</tr>
<tr>
<td>9</td>
<td>Recuento</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>2.6%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Recuento</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>2.6%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Media</td>
<td>5.4</td>
<td>5.6</td>
<td>5.3</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Programa SPSS
Podemos visualizar en este cuadro los resultados de ambos grupos (grupo robótica y grupo control), obtenidos en la prueba fluidez semántica. Siendo el recuento la cantidad de niños evaluado en ese grupo y fila el total en porcentaje.

Grafico 7. Prueba Fluidez semántica de los participantes del grupo robótica y grupo control evaluado con la ENFEN
Fuente: Programa SPSS.

Grafico 7. Ambos grupo en estas graficas obtuvieron una calificación normal-esperado dentro de la prueba TStudent.

Tabla VIII. Prueba Sendero gris de los participantes del grupo robótica y grupo control evaluado con la ENFEN.

<table>
<thead>
<tr>
<th>Sendero Gris</th>
<th>Total</th>
<th>GRUPOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ROBOTICA</td>
<td>CONTROL</td>
</tr>
<tr>
<td>BASE</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>Recuento</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% fila</td>
<td>2.6%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Recuento</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% fila</td>
<td>2.6%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Recuento</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>% fila</td>
<td>7.9%</td>
<td>11.1%</td>
<td>5.0%</td>
</tr>
<tr>
<td>5</td>
<td>Recuento</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>% fila</td>
<td>13.2%</td>
<td>11.1%</td>
<td>15.0%</td>
</tr>
<tr>
<td>6</td>
<td>Recuento</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>% fila</td>
<td>15.8%</td>
<td>22.2%</td>
<td>10.0%</td>
</tr>
<tr>
<td>7</td>
<td>Recuento</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>% fila</td>
<td>15.8%</td>
<td>16.7%</td>
<td>15.0%</td>
</tr>
<tr>
<td>8</td>
<td>Recuento</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>% fila</td>
<td>15.8%</td>
<td>5.6%</td>
<td>25.0%</td>
</tr>
<tr>
<td>9</td>
<td>Recuento</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>% fila</td>
<td>13.2%</td>
<td>27.8%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Recuento</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>% fila</td>
<td>13.2%</td>
<td>5.6%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>Media</td>
<td>6.9</td>
<td>7.0</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Fuentes: Programa SPSS
Podemos visualizar en este cuadro los resultados de ambos grupos (grupo robótica y grupo control), obtenidos en la prueba sendero gris. Siendo el recuento la cantidad de niños evaluado en ese grupo y fila el total en porciento.

Gráfico 8. Prueba Sendero gris de los participantes del grupo robótica y grupo control evaluado con la ENFEN.
Fuente: Programa SPSS.

Grafico 8. Ambos grupo en estas graficas obtuvieron una calificación normal-esperado dentro de la prueba TStudent.
Tabla IX. Prueba Sendero a color de los participantes del grupo robótica y grupo control evaluado con la ENFEN.

<table>
<thead>
<tr>
<th></th>
<th>Recuento</th>
<th>Total</th>
<th>GRUPO ROBOTICA</th>
<th>GRUPO CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td></td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>5.3%</td>
<td></td>
<td>10.0%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>5.6%</td>
<td>10.0%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>11.1%</td>
<td>10.0%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>26.3%</td>
<td>27.8%</td>
<td>25.0%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>11</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>28.9%</td>
<td>33.3%</td>
<td>25.0%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>5.6%</td>
<td>10.0%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>16.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>2.6%</td>
<td></td>
<td>5.0%</td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>5.4</td>
<td>5.7</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Fuente: Programa SPSS.

Podemos visualizar en este cuadro los resultados de ambos grupos (grupo robótica y grupo control), obtenidos en la prueba sendero a color. Siendo el recuento la cantidad de niños evaluado en ese grupo y fila el total en porciento.

Grafico 9. Prueba Sendero a color de los participantes del grupo robótica y grupo control evaluado con la ENFEN.
Grafico 9. Ambos grupo en estas graficas obtuvieron una calificación normal-esperado dentro de la prueba TStudent.

Fuente: Programa SPSS.
Tabla X. Prueba Anillas de los participantes del grupo robótica y grupo control evaluado con la ENFEN.

<table>
<thead>
<tr>
<th>Anillas</th>
<th>GRUPOS</th>
<th>Total</th>
<th>GRUPO ROBOTICA</th>
<th>GRUPO CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASE</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>Recuento</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>15.0%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Recuento</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>5.3%</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Recuento</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>16.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>4</td>
<td>Recuento</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>5.3%</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Recuento</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>5.6%</td>
<td>10.0%</td>
</tr>
<tr>
<td>6</td>
<td>Recuento</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>21.1%</td>
<td>22.2%</td>
<td>20.0%</td>
</tr>
<tr>
<td>7</td>
<td>Recuento</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>7.9%</td>
<td>5.6%</td>
<td>10.0%</td>
</tr>
<tr>
<td>8</td>
<td>Recuento</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>10.5%</td>
<td>11.1%</td>
<td>10.0%</td>
</tr>
<tr>
<td>9</td>
<td>Recuento</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>2.6%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Recuento</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% fila</td>
<td>21.1%</td>
<td>38.9%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>38</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>6.1</td>
<td>7.3</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Fuente: Programa SPSS
Grafico 10. Prueba Anillas de los participantes del grupo robótica y grupo control evaluado con la ENFEN.
Tabla XI. Prueba interferencia de los participantes del grupo robótica y grupo control evaluado con la ENFEN.

<table>
<thead>
<tr>
<th>Interferencia</th>
<th></th>
<th>GRUPOS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>ROBOTICA</td>
<td>CONTROL</td>
<td></td>
</tr>
<tr>
<td>BASE</td>
<td>38</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>5.3%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>5.3%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>7.9%</td>
<td>5.6%</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>10.5%</td>
<td>11.1%</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>18.4%</td>
<td>22.2%</td>
<td>15.0%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>26.3%</td>
<td>27.8%</td>
<td>25.0%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>10.5%</td>
<td>11.1%</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>7.9%</td>
<td>11.1%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>5.3%</td>
<td>5.6%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% fila</td>
<td>2.6%</td>
<td>5.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>5.4</td>
<td>6.1</td>
<td>4.8</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Programa SPSS.
Grafico 11. Prueba interferencia de los participantes del grupo robótica y grupo control evaluado con la ENFEN.
4.2. Análisis de los resultados

Después de haber mostrado y explicado todo lo referente a la parte cuantitativa de los resultados arrojados por este estudio, podemos proceder a realizar un análisis clínico, cualitativo, tomando en cuenta nuestro juicio clínico y la data que incluimos de las investigaciones hechas internacionalmente, en entorno al fortalecimiento de las funciones ejecutivas en niños de 6-12 años que asisten a clases de robótica y grupo control de la misma edad.

Este procedimiento lo haremos en el mismo orden que se ha establecido para las preguntas y objetivos de investigación, para así conseguir una coherencia de la información cualitativa y cuantitativa resultante.

Con relación al fortalecimiento de las funciones ejecutivas de los niños de 6-12 años del grupo robótica que asistieron a clases de robótica por un periodo de 6 semanas , una vez por semana durante dos horas y un grupo control de la misma edad , que nunca ha estado expuesto a robótica ,específicamente en el periodo de trabajo abril-junio 2018 ,de acuerdo con la data cuantitativa que resulto del proceso de investigación que llevamos a cabo y tomando como referencia además las informaciones que arrojaron otras investigaciones a nivel internacional realizadas en los últimos años, la robótica obtuvo un mayor porcentaje 37.7% en todas las pruebas ENFEN , mientras que el grupo control obtuvo un 32.4% en todos los niveles interpretativos. La prueba que obtuvo mayor relevancia entre los grupos, fue anillas con un 7.3%. Esta prueba evalúa diversos aspectos relativos a las funciones ejecutivas prefrontales, implicando las áreas dorsolaterales, cuerpo calloso, ganglios basales, cerebelo y áreas premotoras. Valorando las funciones evaluadas tales como:

1. Capacidad para programar el comportamiento, facilitando la secuenciación, planificación y previsión de conductas dirigidas al logro de un objetivo
2. Aptitud del niño para descomponer un problema global

3. Flexibilidad cognitiva

4. Capacidad de abstracción y memoria prospectiva

5. Destreza motriz

1. Memoria operativa

Siendo así los resultados de esta investigación, la robótica apoya a diversas investigaciones en países como México, Colombia, Ecuador, España y Estados Unidos en añosanteriores.

Desde la década de los setenta, se ha despertado un especial interés por los aportes que la robótica puede realizar a los procesos educativos (Ruiz, 1987), generándose una nueva área de estudio tanto a nivel de enseñanza como psicológica. Así lo define Ruiz Velasco en su libro Educatronica.

Al analizar los resultados de la data teórica que incluimos de nuestro trabajo de investigación implementar la robótica como asignaturas en los colegios, como una nueva estrategia de enseñanza y terapéutica nos ayudaría a resolver muchas dificultades tanto cognitiva como conductual. Así lo refleja también Jordi Blancafort de Čapek Maker (centro de tecnología educativa en Barcelona): “Aprender a programar, ya sea con videojuegos o mediante la robótica y la impresión 3D es necesario para poder entender las nuevas habilidades ineludibles a día de hoy: la creatividad, el trabajo en equipo, el pensamiento científico, la reflexión, la resolución de problemas y controlar nuestros impulsos”. Se estila que los sistemas educativos de todo el mundo sufrirán grandes modificaciones de aquí a 2030 propiciados por la revolución tecnológica. En los próximos 15 años, internet va a convertir los colegios en “entornos
interactivos” que pondrán por debajo las formas tradicionales de aprendizaje y cambiarán la manera de ser de docentes, padres y estudiantes. (Moreno, 2015).

Dentro de los principales cuadros clínicos con manifestaciones de tipo disexecutivo encontramos Trastornos del espectro autista, donde incluimos en nuestro marco teórico investigaciones realizadas con el mismo, haciendo referencia a la robótica. En años recientes se ha implementado el uso de robots como parte de la terapia en niños con TEA, ya que mantiene la atención de los niños y los involucran en las actividades. Uno de estos robots es Milo, el cual tiene como objetivo enseñar de una forma interactiva las emociones, conversaciones y comportamientos en situaciones sociales, mejorar el vocabulario, expresar empatía, autorregularse y automotivarse. (Báez, 2018). Los resultados en este estudio fueron favorables.

De acuerdo a Kim (2012), las intervenciones con robots son beneficiosas en el mejoramiento de la comunicación de niños con TEA, ya que estos actúan como reforzadores intrínsecos y motivadores de las interacciones sociales con otras personas. Estas razones y también el gran interés que han mostrado los niños con TEA por juguetes tecnológicos, influyen en una buena adaptabilidad a los robots.

Seymur Papert(1980) quien fue discípulo de Jean Piaget desarrollo en su libro de Mindstorms: Children, Computers, and Powerful ideas, la teoría del construccisionismo el cual sitúa en el centro de todo proceso de aprendizaje a quien aprende, otorgándole un rol totalmente activo, ampliando su conocimiento a través de la manipulación y la construcción de objetos. Otorgándole un aprendizaje donde el computador tuviese un rol relevante para que los niños pudiesen comprender de manera natural cualquier materia de la enseñanza formal.

Pasando a otro ángulo de nuestra investigación, en lo relacionado con el uso de las pruebas, solo la evaluación neuropsicológica delas funciones ejecutivas en niño (ENFEN) surgió como
prueba única utilizada en la Akademia Robotic Academy en lo relacionados con la valoración de las funciones ejecutivas en niños.

Por otro lado, las funciones ejecutivas son el resultado de un proceso cerebral que nos ayuda en la toma de decisiones, la robótica interviene en la capacidad de organización y planificación de las conductas, implementando y evaluando sus propias respuestas de tal forma que las personas sean capaces de establecer objetivos, trazar planes para lograrlos, y supervisarlos mientras lo está poniendo en práctica, para corregir sus errores.

Por tal razón citamos a Isaac Asimov (1942), en su estudio nos explica como la robótica educativa apoya y fortalece “áreas específicas del conocimiento” y desarrolla competencias “a través de la concepción, creación, ensamble y puesta en funcionamiento de robots.” Desde el punto de vista neuropsicológico mejora la agilidad mental y la capacidad de razonar. La memoria y la retención también se potencian durante el proceso de creación del robot.

La visión espacial y la capacidad verbal también se desarrollan durante el proyecto, al tenerla en cuenta para configurar al robot de movimiento y habla.
Conclusiones

En primer lugar los indicadores de fortalecimiento de las funciones ejecutivas en niños de 6-12 años que asistieron a clases de robótica presentaron una mayor puntuación en todas las pruebas correspondiente a la ENFEN. Siendo las anillas y la interferencia las de mayor puntuación. Mientras que los niños que no están en robótica obtuvieron una menor puntuación. Las funciones evaluadas en las anillas e interferencia son las siguientes:

- Capacidad para programar la conducta
- Capacidad de planificación y secuenciación
- Orientación espacial
- Capacidad de abstracción
- Memoria espacial
- Memoria prospectiva
- Memoria de trabajo
- Flexibilidad mental
- Coordinación visomotora
- Capacidad para descomponer un problema global en metas parciales
- Habilidades para desarrollar y mantener estrategias de solución de problemas adecuadas al logro de un objetivo
- Coordinación motriz
Atención selectiva

Atención sostenida

Capacidad para clasificar

Resistencia a la interferencia

Esto no dista mucho de los hallazgos que hemos visto en otras investigaciones internacionales, además que coincide con la data que nos explica el hecho de que este tipo de enseñanza fortalece el área cognitiva. Concluimos que la robótica fortalece las funciones ejecutivas por los resultados que arrojaron las pruebas, obteniendo en el grupo robótica un porcentaje de un 37.7% y el grupo control un porcentaje de un 32.4%.

En una de nuestras investigaciones planteadas en el trabajo que al igual utilizaron la prueba ENFEN para medir las funciones ejecutivas, el grupo que estuvo en clases de robótica también obtuvieron un mayor porcentaje. En la prueba “fluidez fonológica” los participantes de esa investigación antes de iniciar con las clases de robótica obtuvieron una puntuación de 2,25% luego de iniciar las clases de robótica obtuvieron una puntuación de 3,5%.

Es decir, se produce una mejoría después de estar expuestos a clases de robótica. Se pudo observar una mejoría también en la prueba de “fluidez semántica” obteniendo antes de estar en clases de robótica un 7,5% y luego un 10%. De nuevo, los participantes han mejorado su ejecución en esta medida de 2,5 palabras. (Rodríguez, Desarrollo de las funciones ejecutivas a través de videojuegos en la atención a la diversidad, 2015).
En segundo lugar, los niveles interpretativos que marcaron valores relevantes en los grupos de estudiantes, podemos decir que la anilla obtuvo un valor más relevante en los grupos con una puntuación de 7.3% por ciento mientras que el grupo control en esa prueba obtuvo un 5.1%.

Las características que se identificaron con valores más elevados (anillas e interferencia) en los grupos de estudios son los siguientes:

- Capacidad para programar el comportamiento, facilitando la planificación de conductas dirigidas al logro de un objetivo
- Aptitud del niño para descomponer un problema global
- Flexibilidad cognitiva
- Capacidad de abstracción y memoria prospectiva
- Destreza motriz
- Memoria operativa

Tomando en cuenta que la prueba de la interferencia evalúa fundamentalmente el control atencional del niño, ya que la atención sostenida constituye un elemento esencial para facilitar el funcionamiento del área prefrontal.

Relacionado esta información con la data que encontramos, referente a los resultados cuantitativos relacionado a como fortalece la robótica a las funciones ejecutivas, las informaciones son muy escasas debido a la novedad del tema investigado.

De acuerdo al resultado del análisis de los datos concluimos que, de los grupos evaluados, el grupo control presento un menor porcentaje en las pruebas de sendero a color, anillas e interferencia. Esto pareciera estar indicando que a estos niños se les dificulta la capacidad de
planificación, orientación espacial, atención selectiva, flexibilidad mental y capacidad para inhibir.

En lo que se refiere a la prueba sendero gris que fue la prueba donde hubo una igualdad de puntuación entre los grupos, podemos discutir que dado que es similar a tareas que normalmente los niños realizan en su trayectoria escolar (unir puntos numerados para formar una figura) existiendo un aprendizaje previo que podría favorecer el resultado.

Por otra parte, lo cual también es parte de nuestra idea a defender, analizando la data de los promedios de los grupos podemos referir que recurrir a nuevas estrategias que integren las tecnologías de la información y de la comunicación (TICs) en los procesos de intervención neuropsicológica puede ser válida. En este sentido, daría una respuesta innovadora a una necesidad real, las alteraciones cognitivas derivadas del daño cerebral adquirido y prevención de las mismas.

Podrían ser una alternativa efectiva y útil que podría generar beneficios mayores y complementarios a la del método de enseñanza tradicional, aplicándose también a estrategias innovadoras, que inquieten, enfoquen y motiven a la persona, generando la construcción de conocimiento en el estudiante desde un proceso propio, donde a través de las TICs el estudiante genera aprendizaje y razonamiento lógico que le ayudaran a comprender procesos más complejos de la moderna sociedad actual.

Esto pudiese ser una preocupación de los profesionales a ser reemplazados por una máquina o la resistencia de aceptar la existencia de un vínculo terapeuta-paciente a través de la tecnología. Desde el punto de vista de nuestra investigación esta preocupación no tendría mucho fundamento ya que las TICs pueden constituir una herramienta complementaria para facilitar el trabajo del neuropsicólogo, psicólogo, educador, entre otros.
En otras investigaciones los resultados demostraron que la robótica se puede convertir en una herramienta excelente para comprender conceptos abstractos y complejos en asignaturas del área de las ciencias y las tecnologías (STEM) por sus siglas en inglés Science, Technology, Engineering and Mathematics. Así como también permite desarrollar competencias básicas tales como trabajar en equipo y adquirir nuevas habilidades para adaptarse a la sociedad.

En España (2010), México (2008), han hecho múltiples investigaciones donde los resultados confirman el aporte que da la robótica en muchos aspectos de la vida del ser humano, enfatizando en el área cognitiva.

Por otro lado, partiendo de las teorías planteadas en el marco teórico el cual hicimos referencia se basan el tema como es el Construccionismo por Seymour Papert el cual es una teoría del aprendizaje que tiene como base aprender construyendo y en donde se realiza una concepción del mundo a partir de sus representaciones.

Quien destaca la importancia de la acción, es decir del proceder activo en el proceso de aprendizaje. Se inspira en las ideas de la psicología constructivista y, de igual modo, parte del supuesto de que, para que se produzca aprendizaje, el conocimiento debe ser construido (o reconstruido) por el propio sujeto que aprende a través de la acción, de modo que no es algo que simplemente se pueda transmitir. (Ruiz-Velasco, Revista de Pedagogía, 2011).
Por último, partiendo de nuestra elección de prueba estadística dentro del programa SPSS, (t) Student no existe diferencia significativa entre la media de las evaluaciones del grupo robótica y la media de las evaluaciones del grupo control. Aunque no existe diferencias significativas, si observamos los resultados de los promedios obtenidos tabla 2, vemos que el grupo de robótica supera en todas las evaluaciones al grupo control, con excepción de sendero gris, y la diferencia es aún mayor en la prueba anillas e interferencia; por lo que podríamos inferir, que las clases de robótica estimulan la capacidad cognitiva para las funciones ejecutivas de los niños.
Recomendaciones

Generales:

- Dentro de las recomendaciones que entendemos serian importantes está el extrapolar esta investigación a otros centros de robótica y educativos y correlacionarlas con los resultados de este estudio, ya sea a nivel del Distrito Nacional, como a nivel del país, entendiendo que es relevantemente imperioso conocer las funciones ejecutivas en niños niñas y adolescentes.

- Que el ministerio de educación en República Dominicana (MINERD) revise el trabajo que se está realizando con los niños, niñas y adolescentes en otras instituciones para evaluar la eficacia de la robótica en las funciones ejecutivas.

- La implementación de una propuesta a colegios con metodologías tradicionales se podrá implementar estrategias de robótica como apoyo en la enseñanza de conceptos básicos, en los niveles de primaria y secundaria de las instituciones educativas privadas y públicas de Republica Dominicana.

- Que los padres o tutores conozcan la importancia que tienen las funciones ejecutivas y las diferentes estrategias de enseñanza que podemos utilizar hoy en día para el fortalecimiento de las mismas.

- Los profesores y terapeutas fomenten la creatividad en clases para adaptarse a los cambios que le exige la sociedad reduciendo las demandas de deserción escolar o reprobación de materias, aumentando la estructura del método de aprendizaje más apto para los estudiantes.

- Implementar nuevas estrategias de intervención en el área de neuropsicología con robótica.

- Trabajar con TEA la Robótica para mejorar las funciones ejecutivas de niños con TEA y TDHA.
Recomendaciones a la Escuela de Robótica:

- Incluir dentro de la institución de trabajo a un psicólogo o psicóloga clínica, con especialidad en neuropsicología o psicología infantil para que el trabajo multidisciplinario sea más amplio y diverso.

- La creación de un protocolo de evaluación y tratamiento que trate las funciones ejecutivas antes y después de comenzar el periodo de clase de robótica, sería de suma importancia, pues ya habrá una investigación que explique qué tan importante es el fortalecimiento de las funciones ejecutivas y que les brinde a los padres o tutores una información más clara en lo que esta enseñanza le aporte a su hijos(as) desde el punto de vista psicológico.
Bibliografía

al., L. e. (2001). In Desarrollo neuropsicológico de lóbulos frontales y funciones ejecutivas.

Clark. (2017). Competencias parentales que favorecen el desarrollo de funciones ejecutivas en escolares. CINDE.

Felice, J. D. (s.f.). robot humano. Recuperado el 14 de 08 de 2018, de obothumano.galeon.com/productos774285.html

LEG0. (s.f.). Obtenido de https://www.lego.com/es-ar/themes/creatorexpert

Anexos