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Simple Summary: Tauopathies is a term coined to describe an umbrella of disorders characterized
by abnormal Tau polypeptide deposits in neurons, glial cells, and extracellular space. In this work,
we propose a novel quantification protocol for the study of tauopathies based on the U-Net neural
network architecture. We also compare the proposed method against other state of the art variations
of the U-Net to test its efficacy.

Abstract: Efforts have been made to diagnose and predict the course of different neurodegenerative
diseases through various imaging techniques. Particularly tauopathies, where the tau polypeptide
is a key participant in molecular pathogenesis, have significantly increased their morbidity and
mortality in the human population over the years. However, the standard approach to exploring
the phenomenon of neurodegeneration in tauopathies has not been directed at understanding the
molecular mechanism that causes the aberrant polymeric and fibrillar behavior of the tau protein,
which forms neurofibrillary tangles that replace neuronal populations in the hippocampal and cortical
regions. The main objective of this work is to implement a novel quantification protocol for different
biomarkers based on pathological post-translational modifications undergone by tau in the brains
of patients with tauopathies. The quantification protocol consists of an adaptation of the U-Net
neural network architecture. We used the resulting segmentation masks for the quantification of
combined fluorescent signals of the different molecular changes tau underwent in neurofibrillary
tangles. The quantification considers the neurofibrillary tangles as an individual study structure
separated from the rest of the quadrant present in the images. This allows us to detect unconventional
interaction signals between the different biomarkers. Our algorithm provides information that will be
fundamental to understanding the pathogenesis of dementias with another computational analysis
approach in subsequent studies.

Keywords: biomarkers; convolutional neural networks; deep learning; immunofluorescence quantifi-
cation; dementias; tau protein; U-Net

1. Introduction

Neurodegenerative diseases, known as tauopathies, are proteinopathies whose main
characteristic is the formation of insoluble fibrillar protein structures called neurofibrillary
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tangles (NFTs) that are formed mainly by abnormal chemical species of the tau protein in
various regions of the human brain.

This group of diseases includes Alzheimer’s disease (AD), frontotemporal demen-
tia (FTD), progressive supranuclear palsy (PSP), and tangle only (TO) [1–3]. In these
pathologies, the tau polypeptide undergoes several abnormal post-translational modifi-
cations (PTMs) such as hyperphosphorylation, proteolysis, and conformational changes,
among others. These chemical and physical changes lead the protein to dissociate from the
microtubules to polymerize forming insoluble aggregates called paired helical filaments
(PHFs), which will assemble the NFTs [4].

Studies using antibodies directed against the different PTMs of the tau protein have
begun to use histological and triple-label immunofluorescence in the differential diagnosis
of tauopathies [5]. However, the PTMs against which these antibodies are directed have
only been studied qualitatively at a molecular level in the brain, where the disease occurs.
Post-mortem brain tissues from patients with tauopathies, in addition to confirming the
diagnosis, can support the study of the mechanisms that trigger the aberrant behavior of
the tau polypeptide and culminate in the death of the neuronal population [6].

The fluorescent signals of the immunostaining against these molecular events are
valuable for quantifying the phenomena of neurodegeneration in this group of diseases.
Therefore, our study focuses on designing a new protocol for obtaining quantitative in-
formation on the pathogenesis of tauopathies through image segmentation using deep
learning (DL). This quantification is performed based on tau polypeptide biomarkers
detected in NFTs by three-signal immunofluorescence techniques.

Common unsupervised methods for segmentation of biomedical images include K-
means clustering and thresholding [7,8]. However, they might fail in complex scenarios
like the segmentation of brain tumors, where thresholding failed to provide consistent
outputs, whilst DL approaches have achieved better results [9]. K-means also suffers from
a lack of consistent outcomes and might need human validation due to its unsupervised
nature [8]. DL models, particularly convolutional neural networks (CNNs), have proven
to be effective tools for the segmentation of a wide range of biomedical images [10–13].
The U-Net architecture [14] has been widely used used in these cases. This is because an
important challenge in these applications is the ability to work with small datasets and with
a limited amount of annotated samples, since generating additional samples is expensive
and requires domain expertise [15–17], and the U-Net was designed with that in mind.
Many variants have been proposed to fine-tune it for different applications [18]. Recent
applications of the U-Net include the semi-Siamese U-Net [13], which was proposed to
separate lung and heart bioimpedance images through two parallel decoders, and the
RCU-Net [12], which was used to segment breast tumors in ultrasound images with the
use of residual and dense blocks. The semi-Siamese U-Net outperformed the traditional
U-Net by 2.19% in the DICE coefficient, while the RCU-Net outperformed it by 2.01%, each
one in their respective tasks.

The RandomSURF algorithm is within the protocols that have been used for the quan-
tification of amyloid beta (β-Amyloid) peptide plaques, which is another major protein
in the pathogenesis of AD [19]. The quantification was performed through the segmen-
tation of a fluorescent signal in mouse brains expressing the mutated genes of familial
AD. After segmentation, quantification is obtained by the number of segmented pixels.
Although ImageSURF delivered good results, the images used in the study were limited to
a single β-Amyloid fluorescence signal (excluding the NFTs generated by the tau polypep-
tide) with low resolution, thus some structures are not available for segmentation and
subsequent fluorescence quantification.

In addition, the artificial concentration of β-Amyloid in mouse brains may not correlate
at all to what occurs in the late stages of AD in human brains. Indeed, it has been shown
that one of the factors limiting our understanding of human neurological diseases lies in
the inherent limits of animal models [20]. Furthermore, a great amount of research on the
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quantification of β-Amyloid and tau polypeptides is mainly aimed at non-invasive clinical
diagnosis of neurodegeneration [21–23].

For the development and validation of the fluorescent signal quantification protocol,
we used a set of four types of tauopathy images to build a training dataset of adequate size:
AD, PSP, TO, and FTD. In all four disease types, the images were obtained by three-signal
immunofluorescence assays. Although the biological interpretation of fluorescence in each
disease varies, our approach allows us to consider them based on the use of biomarkers
against abnormal tau polypeptide PTMs in all cases.

As part of our study, we propose a novel model based on the semi-Siamese U-Net [13].
We compare its performance to a four-output modified version of the U-Net [14] and three
other state-of-the-art neural networks: the RCU-Net [12] including their proposed dense
block, the RCU-Net without the dense block (Res U-Net), and the Inception U-Net [18].

The proposed method outperformed the other methods in our benchmark in the four
metrics used to assess performance, achieving an intersection over union score of 82.68%,
a DICE coefficient of 90.64%, a false positive rate of 4.37%, and a true positive rate of 86.9%.

The main contributions of this paper are, on one side, the design and validation of a quan-
tification protocol based on DL fluorescent image segmentation for tau polypeptide biomarkers
obtained from brain tissue of patients with different tauopathies. On the other side, this work
expands the state-of-the-art by proposing a novel U-Net-based neural network model.

The remainder of this paper is organized as follows. We begin by providing details on
how the data were obtained, and also by describing our segmentation protocol, its components,
and the experiments that were carried out to test the different models in Section 2. Section 3
presents the results of our experiments. Finally, the implications of the results are discussed in
Section 4, whilst conclusions and final remarks are provided in Section 5.

2. Materials and Methods
2.1. Data Acquisition

The image database for this research was obtained from the brains of patients with
different tauopathies and was facilitated by a collaborative project between the National
Dementia Biobank and the School of Engineering and Sciences of Tecnologico de Monter-
rey. These immunofluorescence images correspond to NFTs, visualized using secondary
antibodies coupled to fluorochromes and primary antibodies against epitopes correspond-
ing to different pathological PTMs undergone by the tau polypeptide in four types of
proteinopathy-tauopathies: AD, PSP, TO, and FTD (Figure 1). The images, obtained at 100×
magnification, were processed with three fluorescent signals, each signal corresponding
to a different antibody or molecule with specific binding to polymeric insoluble fibrillar
forms such as thiazine red (TR), used to specifically stain MNFs.

Several combination protocols were used for immunostaining of the different PTMs in
the brain regions, so the biological and molecular interpretation of the results must take
into account the combination method used as the immunostaining mechanism, as well
as the specific tauopathy in each case. Figure 2 shows an example of the combination of
individual channels.

For each channel, the samples were immunostained with the following antibodies,
and the epitopes against the pathological PTMs in the tau polypeptide are shown:

• Red Channel: Thiazine red and the antibodies TG3 (regional conformational change
with phosphorylation at amino acid threonine 231), pT231 (phosphorylation at thre-
onine 231), Alz50 (structural conformational change), pS396 (phosphorylation at
serine 396), and AT100 (regional conformational change and phosphorylation at
serine 202, threonine 205, threonine 212, and serine 214).

• Green channel: AT8 (phosphorylation at serine 202, threonine 205 and serine 208), CP13
(phosphorylation at serine 202), 499 (amino terminal end), Tau-7 (carboxyl terminal
end), TauC3 (proteolysis at aspartic 421 carboxyl terminal end) antibodies, PHF1
(phosphorylation at serines 396 and 404), AD2 (phosphorylation at amino acids serine
396 and serine 404), and 423 (proteolysis at glutamic 391 of the carboxyl-terminal end).
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• Blue Channel: Antibodies pS396, S-199 (phosphorylation at amino acid serine 199),
pT231, and Alz50.

Figure 1. Representative examples of the images obtained by Immunofluorescence for each of the
proteinopathies-tauopathies in the hippocampus of the clinical cases included in this study. High
magnifications (100×) are observed for neurofibrillary tangles for each disease group. (a) Alzheimer’s
disease; (b) progressive supranuclear palsy; (c) taEngle only; (d) frontotemporal dementia.

Figure 2. Representative images of an immunofluorescence assay with double immunostaining
and thiazine red dye staining of the hippocampus of an AD patient and examples of assignment
of the corresponding training labels. (a) Immunoreactivity of AT8 antibody (green channel) detect-
ing pathological phosphorylations at amino acids serine 202 and threonine 205 of the tau protein is
observed. (b) Positive staining against fibrillar forms of tau protein is observed in the red channel.
(c) The 396 antibody (blue channel) detects pathological phosphorylation at serine 396 of the tau
protein. The images at the bottom are the training labels. The labels show the specific channel
combination that they are targeting. R: red; G: green; B: blue.
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After immunostaining, images were captured using the confocal microscopy technique
(SP8 Leica). The physical size of the captured samples ranges from 26.97 µm to 134.85 µm
on each side, with a digital resolution of 512 × 512 pixels in all cases. The final dataset
contains a total of 97 images where 19 correspond to AD, 51 to PSP, 10 to TO, and 17 to
FTD. The obtention of images of this nature is difficult, as they are taken from the brains of
deceased dementia patients. Therefore, the ability of the U-Net to learn from relatively few
examples is vital.

2.2. Manual Segmentation of Biomarker Signals

In order to obtain the ground truth, the training images were manually segmented
using the online application Labelbox (https://labelbox.com/, accessed on 28 May 2022).
The results were supervised and validated by three experts in neurophysiology and molecu-
lar pathogenesis of neurodegenerative diseases with experience in obtaining and analyzing
immunofluorescent images. In addition, two computational engineering researchers with
expertise in neural networks with biomedical images further validated the annotations.

For each of the available images, four labels were generated to consider all color chan-
nel combinations: red and green (RG); red and blue (RB); green and blue (GB); red, green,
and blue (RGB). For the region to be included in the segmentation, it must be part of the
central growth nucleus of the NFT corresponding to the fluorescent signal and it must show
significant intensity in all respective channels. For the final segmentation to be accepted,
the experts must agree. If they did not agree, a final segmentation was obtained by mutual
consultation. The manual measurements were stored as binary segmentation masks in
JPEG format. To access the information for each label, the binary segmentation masks were
converted into NumPy arrays and then processed using the Python programming language.

2.3. Network Architecture

The proposed architecture is based on the U-Net, which has become prominent in the
field of medical image segmentation for its capacity to obtain good results with few labeled
images [14]. The original U-Net consists of an encoder path (left-side) and a decoder path
(right-side), with skip connections between them to transfer the corresponding feature map
at each level of the network from the encoder to the decoder. The characteristics of the
U-Net apply to our study, where the aim is to segregate the different affected regions.

In this study, we extend the semi-Siamese U-Net [13] to perform the simultaneous
segmentation of four different combinations of immunofluorescence channels in dementia
images. This novel architecture, shown in Figure 3, consists of one contracting path
and four parallel expanding paths to perform the multi-task image segmentation. Each
segmentation task shares the parameters of the contracting path. The mapping from image
to segmentation masks takes a three-channel 256 × 256 pixel image as the input and then
outputs four one-channel 256 × 256 pixel masks. Each level in the encoder consists of two
convolutional layers: the first level contains 16 filters at each layer, the second level 32,
the third level 64, the fourth level 128, and the bottleneck level 256. Each filter has a size of
5 × 5 and they are applied with "same" padding with a stride of 1. Additionally, a dropout
layer with a rate of 0.2 was added after each max-pooling to improve the generalization of
the model. In the decoder, upsampling is carried out with the nearest type interpolation to
double the size of the encoded feature maps at each level. Then, two convolutional layers,
with the same characteristics as in the encoder, are applied, followed by a dropout layer,
again using a dropout rate of 0.2. All the convolutional layers use the rectified linear unit
(ReLU) activation function, except for the final layer in each output, which uses the sigmoid
activation to perform the segmentation with a 1 × 1 convolution.

https://labelbox.com/
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Figure 3. Proposed model of the extended semi-Siamese U-Net neural network. (a) The proposed
model. Each box corresponds to a multi-channel feature map. The number of channels is denoted
at the top of each box; the height and width of each feature map are provided at the edge of each
box. The encoder path on the left consists of five levels (including the bottleneck at the bottom), each
one consisting of two convolutional layers. The outputs of the encoder are concatenated with the
upsampled feature maps in the decoder (gray arrows) before being passed through two additional
convolutional layers. Each of the four decoding paths gets its own copy of the encoder feature map
corresponding to its level. At the end of the network, there are four segmentation blocks. (b) The
final segmentation block. At the end of the network, a 1× 1 convolution is applied to obtain the final
segmentation mask.

2.4. Evaluation Criteria

To provide quantitative performance comparisons across the five tested models, the ex-
perimental results were evaluated using four metrics: true positive (TP), false positive
(FP), the Dice coefficient (DC) [24], and the intersection over union (IOU, also called Jac-
card index) [25]. These measures are defined in terms of the ground truth (GT) and the
segmentation results (SR) obtained from the forward pass of the method to be evaluated.

The TP (Equation (1)) is the proportion of pixels correctly assigned as part of the seg-
mentation to the GT. The higher the TP value, the greater the coverage of the target region.

TP =
GT ∩ SR

GT
(1)

The FP (Equation (2)) is the proportion of pixels wrongly predicted as part of the
segmentation to the GT. The lower the FP, the fewer background pixels that are classified
as part of the affected region.

FP =
GT ∪ SR− GT

GT
(2)

The DC (Equation (3)) is used in segmentation tasks to give a measure of how sim-
ilar the segmented regions are to the GT. The closer the DC to 1, the more accurate the
segmentation result.
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DC = 2
GT ∩ SR
GT + SR

(3)

The IOU (Equation (4)) is similar to the DC, but it measures the total overlap of the SR
and the GT. The closer the IOU is to 1, the more the overlap of both regions approaches an
exact match.

IOU =
|GT ∩ SR|
|GT ∪ SR| (4)

2.5. Training Methods and Experimental Design

To get a reliable final model, 5-fold cross-validation was applied in the experiment.
The total of 97 images were randomly divided into 5 cases. For each case, 78 images
were used for training (80%), and the remaining 19 images were used for validation (20%).
The training set in each fold was subjected to the same transformations to augment the
available data further. First, a random rotation of 90, 180, or 270 degrees was applied to
each image. Then, random elastic deformations [26] were applied to both the original and
the rotated image, resulting in 312 images for training after the augmentation. In order
to help improve training and inference times, the images and masks were resized to
256× 256 pixels using the OpenCV Python library.

We used the Tensorflow v2.6.0 Python API to implement and train all models on a
machine with a Ryzen 73,800× processor, 32 GB of RAM, and an NVIDIA GeForce RTX
3070 GPU. On the first fold for each model, we initialized the weights with TensorFlow’s
Glorot Uniform initializer with limit values −1 to 1, and stored the values on separate files,
then we ran the following folds with the same initial weights.

The experiments were performed using the Adam optimization with learning rates
of 0.1, 0.01, 0.001, 0.0005, and 0.0001, obtaining the best performance with a learning rate
α = 0.0005, using a random test set. Thus, all further models were trained with the Adam
optimizer for 50 epochs with a mini-batch size of 4.

Since the training labels consist of binary masks, we used binary cross-entropy to
compute our model’s cost function. Equation (5) shows the cross-entropy function across
a batch of n samples, where X is the original image, Y is the ground truth label, Ŷ is the
predicted mask by a trained model, ypx is a pixel in the ground truth label, and ŷpx is a
pixel in the predicted segmentation.

L(X, Y, Ŷ) =
1
n ∑

px∈X
−(ypx log(ŷpx) + (1− ypx) log(1− ŷpx)) (5)

Then, the five models were trained using 5-fold cross-validation. Each model used
the same training and test samples for each fold. We used the sigmoid activation function
in the last segmentation layer to obtain a probability map, applying a threshold of 0.5 to
each pixel (i.e., if the pixel’s value was greater than 0.5, then it was included in the final
segmentation and used to evaluate performance).

3. Results

For each model, five sets of numerical weights were generated. The testing images
were input into each model and, for each one, four segmentation masks were obtained.
The output images, along with the training labels, were used to calculate the metrics along
the four outputs, and then these measurements were averaged to obtain the final results
per model using each set of weights. Table 1 summarizes the mean and standard deviation
of the four metrics, along with the four outputs of the models.

Figure 4 shows the boxplots corresponding to the performance of each model across
the four outputs. It can be seen that the proposed model had a better average performance
in all the metrics. In comparison to the traditional U-Net, the DC, FP, IOU, and TP of the
proposed model improved by 1.7%, 3.12%, 2.43%, and 0.72%, respectively. Additionally,
it can be seen that the proposed model is slightly more stable (i.e., has a lower standard
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deviation) than the models that include a residual path, which is often used to improve
stability [18].

Table 1. The mean and the standard deviation of the four metrics across the 4 outputs and the 5-fold
cross-validation. The numbers after the ± represent the standard deviation.

Model DC FP IOU TP

Proposed model 0.9064 ± 0.0223 0.0437 ± 0.0201 0.8268 ± 0.0402 0.8690 ± 0.0424
Inception U-Net 0.8938 ± 0.028 0.0638 ± 0.0252 0.8092 ± 0.0459 0.8593 ± 0.0408
RCU-Net 0.8984 ± 0.0233 0.0519 ± 0.0202 0.8164 ± 0.0385 0.8536 ± 0.0424
Res U-Net 0.893 ± 0.0335 0.0699 ± 0.0561 0.8083 ± 0.0535 0.8589 ± 0.0439
U-Net 0.8894 ± 0.0333 0.0749 ± 0.0443 0.8025 ± 0.0539 0.8618 ± 0.0396

Figure 4. Performance of the five models in the four metrics. TP, IOU, DC, and FP averaged across
the four outputs using 5-fold cross-validation. The x-axis represents the model name and the y-axis
the values of the metric. It can be seen that the proposed model has a better average performance in
all metrics except the TP.

In Figure 5, we randomly selected a representative AD image from the test set with dif-
ferent regions highlighted across each color channel combination to show the segmentation
capabilities of each model on the desired regions. While the performance metrics across
models were close, it can be seen in Figure 5 that the proposed model does a better job
including all the desired areas through all four outputs in the segmentation while avoiding
the undesired ones, as specified by the ground truth labels.
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Figure 5. Experimental segmentation results obtained with the different neural network models.
Each column represents the outputs of the corresponding model and each row one combination of
channels. R: red; G: green; B: blue.

An example of fluorescence quantification can be seen in Figure 6. For each color chan-
nel combination, the proposed model generates a binary segmentation mask. Afterward,
the total number of white pixels is counted and divided by 65,536, the total number of
pixels in the 256 × 256 pixel images, thus obtaining the percentages shown.

Figure 6. Quantification of the fluorescent signal using the proposed model. The quantification
consists of counting the number of pixels in the segmented regions and dividing that number by
65,536, the total pixel count in a 256 × 256 pixel image. R: red; G: green; B: blue.

4. Discussion

In this study, we developed a new protocol for the automatic biomarker quantification
of pathological tau polypeptide PTMs and validated our design against four different
proteinopathy groups using a semi-Siamese U-Net extension.

The proposed method can localize different types of PTMs occurring in the NFT body
and discriminate them from the other pathological events in the quadrant with a DC of
0.9064. Previously, there was no automatic method to obtain quantitative information on
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fluorescence images that focuses on the particular biological event and biomarker based on
the unique structure of the fibrillar lesion. It is important to note that manual segmentation
of the four signals in a three-channel image in an experiment requires a time of 15 to 30 min,
depending on the complexity of the biological disease events captured in the image. Our
design takes only a few seconds to perform the segmentation on a standard CPU.

The segmentation obtained using our DL model, in addition to being faster and simpler,
is more reliable, since it is less prone to variability due to the existence of differences in the
criteria of human raters, subjectivity that may exist based on these differences, or the quality
of the image itself. The proposed method can achieve better performance because each
upsampling path can focus on a single task, instead of sharing weights all the way up
during the upsampling with the other tasks, like the U-Net, the Inception U-Net, Res U-Net,
and the RCU-Net do.

An example of the quantification can be observed in Figure 6. The result offers a higher
association of RB channels (thiazine red and pS396). This implies that phosphorylation
at serine 396 matures into the polymeric fibrillar form with a value of 6.54%, for being a
late event more advanced in the formation of a fibrillar filament than the biomarker for
dual phosphorylation at serine 202 and threonine 305 (AT8 antibody), which is a relatively
earlier event, with a significantly lower value of 3.96%. These results are congruent with
experimental studies that show that in advanced polymeric stages the tau polypeptide is
highly phosphorylated at serine 396 [3,27]. This observation highlights the importance of
the quantification protocol for understanding the maturational stages of neurofibrillary tau
polypeptide changes in different tauopathies and in different brain regions. The quantifi-
cation would be made based on the unique structure of fibrillar lesions on patients, also
including the analysis of other biomarkers controlled by fluorescence.

This work has focused on the development and validation of a computational tool
that will be fundamental in our next studies aimed at understanding the pathogenesis and
molecular mechanisms of neurodegenerative diseases that trigger chemical changes in the
tau protein. This will be carried out in a quantitative and differential way between different
channels and their combinations in triple immunostaining experiments. Furthermore, we
can use it to quantify and analyze other pathological post-translational events that occur in
other important biomarkers, such as β-Amyloid peptide in AD, α-synuclein in Parkinson’s
disease, or any event based on immunolabeling or fluorescence.

Finally, we believe that in order to reach an effective early diagnosis for neurodegen-
erative diseases, it is important to understand the molecular mechanism that leads tau to
acquire aberrant and polymeric behavior, which directly impacts the process of neuronal
death. Knowing the specific molecular processing will guide us to find biomarkers that can
be monitored in less invasive tissues such as cerebrospinal fluid or plasma. For example,
the detection of tau phosphorylated in plasma has already been reported [28,29]. Therefore,
the use of computational technology such as convolutional neural networks to study this
type of post-mortem imaging is very relevant and can provide significant value in the
search for specific biomarkers for each group of neurodegenerative diseases, with the aim
of implementing an early diagnosis in patients.

5. Conclusions

We present a new protocol for the automatic quantification of pathological tau polypep-
tide PTMs in the hippocampus and validate it in patients affected by different tauopathies.
Our design is based on a novel neural network architecture, which was compared with
five state-of-the-art U-Net variants, delivering an improvement in performance. The im-
provement in performance is considered to come from the fact that the network has four
decoding paths, and each path can specialize in its segmentation task. This can be seen
in our model’s ability to ignore regions that should not be considered at all in the final
segmentation. Obtaining quantitative information from post-mortem brain tissue will be
fundamental for the study of the pathogenesis of different neurodegenerative diseases
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explored by immunolabeling and fluorescence techniques, so this quantification protocol
will be essential in our future studies with protein biomarkers.
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