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Tumor interface dynamics is a complex process determined by cell proliferation and
invasion to neighboring tissues. Parameters extracted from the tumor interface fluctuations
allow for the characterization of the particular growth model, which could be relevant for an
appropriate diagnosis and the correspondent therapeutic strategy. Previous work, based
on scaling analysis of the tumor interface, demonstrated that gliomas strictly behave as it is
proposed by the Family-Vicsek ansatz, which corresponds to a proliferative-invasive
growth model, while for meningiomas and acoustic schwannomas, a proliferative
growth model is more suitable. In the present work, other morphological and
dynamical descriptors are used as a complementary view, such as surface regularity,
one-dimensional fluctuations represented as ordered series and bi-dimensional
fluctuations of the tumor interface. These fluctuations were analyzed by Detrended
Fluctuation Analysis to determine generalized fractal dimensions. Results indicate that
tumor interface fractal dimension, local roughness exponent and surface regularity are
parameters that discriminate between gliomas and meningiomas/schwannomas.

Keywords: fractal dimension, scaling analysis, visibility graphs, local roughness exponent, tumor interface, tumor
growth dynamics, morphological parameters, tumor surface regularity

1 INTRODUCTION

Tumor interface exhibits a complex and irregular geometry due to the dynamics involved in the
tumor growth process, which in general takes into account tumor cell proliferation and invasion into
the surrounding tissue. To characterize its complexity, fractal analysis has been used routinely for
tumor detection (Iftekharuddin et al., 2009) and therapy monitoring (Di Ieva et al., 2012). In the case
of brain tumors, magnetic resonance imaging techniques give detailed geometrical information with
excellent spatial resolution and quality for the evaluation of the tumor interface. Parameters
extracted from the tumor interface by scaling and fractal analysis have given relevant clues
about the complex tumor growth dynamics (Brú et al., 2012) (Brú et al., 2003) (Brú et al., 2008)
(Torres Hoyos and Martín-Landrove, 2012) which in turn can be used to further validate tumor
growth models (Brú et al., 2014) for therapy simulation and prognosis. In a previous work (Martín-
Landrove et al., 2020) it was demonstrated that scaling analysis provided a clear difference in the
tumor growth model for gliomas, which follow a ballistic growth model in completely agreement
with the Family-Vicsek ansatz (Family and Vicsek, 1991) (Barabasi and Stanley, 1995), compared to
meningiomas/schwannomas. A different approach that includes fractal properties of the tumor
interface or surface has been proposed by defining surface regularity measures (Pérez-Beteta et al.,
2018) (Popadic et al., 2021). So far, scaling analysis parameters, such as fractal dimension and local
roughness exponent, and surface regularity measures give a global picture of the fractal properties of

Edited by:
Marina Vladimirovna Zueva,

Helmholtz Moscow Research Institute
of Eye Diseases (NMITS GB), Russia

Reviewed by:
Camillo Sherif,

Karl Landsteiner University of Health
Sciences, Austria

Martin Ostoja-Starzewski,
University of Illinois at Urbana-

Champaign, United States

*Correspondence:
Miguel Martín-Landrove

mglmrtn@gmail.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Fractal Physiology,
a section of the journal
Frontiers in Physiology

Received: 18 February 2022
Accepted: 31 May 2022
Published: 27 June 2022

Citation:
Sánchez J and Martín-Landrove M
(2022) Morphological and Fractal

Properties of Brain Tumors.
Front. Physiol. 13:878391.

doi: 10.3389/fphys.2022.878391

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 8783911

ORIGINAL RESEARCH
published: 27 June 2022

doi: 10.3389/fphys.2022.878391

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.878391&domain=pdf&date_stamp=2022-06-27
https://www.frontiersin.org/articles/10.3389/fphys.2022.878391/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.878391/full
http://creativecommons.org/licenses/by/4.0/
mailto:mglmrtn@gmail.com
https://doi.org/10.3389/fphys.2022.878391
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.878391


the tumor interface. Since the tumor growth process is
heterogeneous it is expected that its fractal properties should
be heterogeneous as well and a more general approach is needed
and general multifractal analysis methods (Kantelhardt et al.,
2002) (Lopes and Betrouni, 2009) (Gu and Zhou, 2006) applied to
the fluctuations over the interface have to be used. In the present
work, an extended image database is used to determine an
extended group of parameters that characterize the tumor
interface, including those previously determined (Martín-
Landrove et al., 2020).

Related to the assessment of the tumor interface, several
methods have been proposed for the segmentation of brain
tumors (Işın et al., 2016) (Wadhwa et al., 2019) (Zhao et al.,
2020) from magnetic resonance images, which include
conventional methods such as thresholding and region
growing, supervised methods mainly represented by support
vectors machines and artificial neural networks and
unsupervised methods which include clustering methods
and deformable models. Even though supervised methods
perform better than unsupervised ones (Rao et al., 2018),
for the purpose of the present work, unsupervised methods,
such as K-means or Fuzzy C-means are preferable since these
methods do not need any training set and in many cases are
simpler in its numerical implementation. In the present work,
an unsupervised method based on dynamic quantum
clustering (Weinstein and Horn, 2009), (Horn and Gottlieb,
2001) is used for image segmentation to determine the tumor
interface.

The article is organized as follows, in Section 2 it is described
the selection of images for this study, the segmentation method
employed for determination of the tumor interface and the
different morphological parameters that describe the tumor
interface such as fractal dimension and lacunarity, growth
dynamics exponents, regularity measures, complex visibility
graphs and parameters derived from multifractal analysis. The
results are discussed in Section 3 and the conclusions are
presented in Section 4.

2 MATERIALS AND METHODS

2.1 Image Selection
Images for high grade gliomas were extracted from different
collections in The Cancer Imaging Archive (Chang et al., 2011),
(Clark et al., 2013); The Cancer Genome Atlas Low Grade Glioma
(TCGA-LGG) data collection (Pedano et al., 2020), the
Repository of Molecular Brain Neoplasia Data
(REMBRANDT) (Scarpace et al., 2019) for astrocytomas and
oligodendrogliomas of grades 2 and 3, and The Cancer Genome
Atlas Glioblastoma multiforme [TCGA-GBM] collection
(Scarpace et al., 2016) for glioblastoma multiforme. Also, data
coming from the RSNA-ASNR-MICCAI Brain Tumor
Segmentation (BraTS) Challenge 2021 (Baid et al., 2021)
(Menze et al., 2015) (Bakas et al., 2017). For other brain
neoplasias, such as meningiomas and acoustic schwannomas,
local image datasets were used. Among these collections, only
contrast enhanced T1-weighted images, with tumor lesions

clearly identified as such and separated from anatomical
structures, were selected for analysis.

2.2 Clustering of Data and Image
Segmentation
Image digital levels were clustered using the Dynamic Quantum
Clustering algorithm (DQC) (Weinstein and Horn, 2009) (Horn
and Gottlieb, 2001) which assumes that data are described by a set
of points, each one defined with some uncertainty, σ and the
distribution for all points in data space is given by a Parzen
estimator, φ, which satisfies the time independent Schrödinger
equation for its ground state,

− 1
2σ2

∇2φ + V �X( )φ � Eφ � 0 (1)
which leads to the evaluation of an energy potential

V �X( ) � 1
2σ2

∇2φ

φ
(2)

The number of potential minima (Horn and Gottlieb, 2001) was
previously used (Martín-Landrove et al., 2020) to determine the
number of classes in a K-means algorithm alone. In the present
work, the full dynamic quantum clustering algorithm is used and
by Ehrenfest theorem, digital levels evolve in time toward the
potential minima according to the following equation of motion
(Lafata et al., 2018),

FIGURE 1 | Clustering of digital levels. (A) Original image, (B) clustered
image, (C) Time evolution of digital levels.
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σ2
d2Xk
�→

dt2
� −∇V Xk

�→( ) − γ
dXk
�→
dt

(3)

which is a second order Langevin equation with a dissipative term
γ. The clustering process is performed with a suitable selection of
parameters such as σ2, which is an equivalent to a “mass”, and
determines the number of classes among the digital levels (Horn
and Gottlieb, 2001), dissipation, γ and time interval. These
parameters are estimated according to the magnitude of the
digital levels in the image and assess the evolution of all the
data to the potential minima. An example of clustering of digital
levels is shown in Figure 1. For image segmentation the dynamics
is performed as a two step process (Sánchez and Martín-
Landrove, 2021):

Dynamic A: First application of the dynamics upon the
original image using the potential calculated from the original
image histogram. At the end of this step, a Parzen estimator is
evaluated using the clustered image histogram, allowing for the
calculation of a “trap” potential, which defines the number of
classes if a further classification algorithm, such as K-means, is to
be used. It has been proved that the dynamic quantum clustering
algorithm provides the same set of centroids as the K-means
algorithm (Sánchez and Martín-Landrove, 2021).

Dynamic B: Second application of the dynamics upon the
original image using the “trap” potential.

In Figure 2 it is shown how the selection of the appropriate σ2

determines the number of classes and therefore the image
segmentation. It is important to note that the “trap” potential
compared to the original Schrödinger potential, exhibit a well
defined minima, which allows for an unsupervised definition of
the number of clusters and an improvement in the assessment of
the tumor interface.

2.3 Morphological Parameters
2.3.1 Fractal Dimension and Lacunarity of the Tumor
Interface
Fractal dimension (Iftekharuddin et al., 2003) and lacunarity
(Plotnick et al., 1993) have been used as morphological
parameters to characterize tumor interface and grading of
brain tumors (Smitha et al., 2015) (Park et al., 2020). Both
quantities can be calculated using a box counting algorithm
and are defined as

dF � − lim
ϵ→0

log N ϵ( )( )
log ϵ( ) (4)

withN (ϵ), the number of boxes containing the fractal object and ϵ
the size of the box. In a similar way, lacunarity is defined as

λ ϵ( ) � σ ϵ( )
μ ϵ( )( )2

(5)

FIGURE 2 |Dependence of the segmentation procedure on the value of the ‘mass’ of the particle, σ2. Arrows indicate how the potential energy minima, in the ‘trap’
potential, collapse as σ2 is increased from top to bottom by a 3-fold factor. On the right, the corresponding segmentation.
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where μ (ϵ) is the mean of point density within the box of size ϵ
and σ (ϵ), the standard deviation.

2.3.2 Scaling Analysis and Tumor Growth Dynamics
Tumor interface, in both resected and in vitro samples (Brú et al.,
2012) (Brú et al., 2003), and in vivo (Torres Hoyos and Martín-
Landrove, 2012) (Martín-Landrove et al., 2016) (Martín-
Landrove et al., 2020) has been characterized using scaling
analysis techniques. These studies have shown that tumor
contours exhibit super-rough scaling dynamics described by
the Family–Vicsek ansatz (Family and Vicsek, 1991) (Barabasi
and Stanley, 1995) that corresponds to a ballistic growth process
or a proliferative-invasive tumor growth model. The roughness of
the tumor interface can be parameterized at the global level, with
an exponent α, and at the local level by a roughness exponent, αloc.
In three dimensions, the local roughness exponent relates the
scale-averaged width of the interface between tumor and host to
the scale of growth s, exhibiting a power-law behavior for small s
(Torres Hoyos and Martín-Landrove, 2012) (Martín-Landrove
et al., 2016):

W s( ) ~ sαloc (6)
with W given by (Brú et al., 2008),

W s, t( ) � 1
s
∑
riϵs

ri t( ) − 〈ri〉s[ ]2⎧⎨⎩ ⎫⎬⎭
1
2

Σ

(7)

where < ri > s represents the average of the radius, measured from
the tumor center, over a patch of scale s located at the tumor
interface, and *{ }Σ represents the average over all realizations (all
possible patches of scale s) over the interface surface Σ. In order
for the growing process to follow the Family–Vicsek ansatz
(Family and Vicsek, 1991), fractal dimension and local
roughness exponent are related in a general way (Family and
Vicsek, 1991) (Barabasi and Stanley, 1995), i.e., their sum is equal
to the embedding dimension of the shape, or Euclidean
dimension, dE,

αloc + dF � dE (8)
Also, the saturation value of the interface width,Wsat, scales with
average of the tumor size, 〈R〉 as

Wsat 〈R〉( ) ~ 〈R〉α (9)
where α is the global roughness exponent.

2.3.3 Surface Regularity Measures
A surface regularity measure has been proposed to characterize
glioblastoma multiforme (Pérez-Beteta et al., 2018) by the
following equation,

SR � TV

TVeq
(10)

where TV is the total volume of the tumor and TVeq is the volume
of a sphere which has the same surface area as the tumor, TS.
Thus

SR � 6
��
π

√ TV�����
TS( )3

√ (11)

In a similar way, a surface factor has been proposed (Popadic
et al., 2021) for grading meningioma tumors. the surface factor is
defined as,

SF � TSeq
TS

(12)

where TSeq is the surface area of an sphere with a volume equal to
the tumor volume, TV and TS is the surface area of the tumor. In
terms of TV and TS, SF can be written,

SF � 6
��
π

√( )23TV2
3

TS
� SR

2
3 (13)

So any of the proposed regularity measures SR or SF are
equivalent for the description of the surface regularity and
therefore SR will be used in the present work. According to
(Pérez-Beteta et al., 2018), SR is related to the fractality or
roughness of the tumor surface, i.e., if SR ≪ 1, tumor exhibits a
distinct fractal dimension with a rough surface, while
otherwise its fractal dimension is close to the Euclidean one
and the tumor surface is smooth. Nevertheless, the actual value
of SRmust be corrected by a shape factor due to the fact that the
distribution of points over the tumor surface could be
elongated along certain directions, departing from the
roughed sphere condition,

FIGURE 3 | Principal component analysis of the tumor interface. (A)
fractional anisotropy of the ellipsoid obtained by PCA, (B) PCA ellipsoids,
(black), located inside the tumor interface (red) and (C) tumor interface
correction (blue).
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SR
p � SR

fshape
(14)

fshape is calculated in a likewise way as SR,

fshape � Vellipsoid

Vsphere
(15)

where Vellipsoid is the volume of an ellipsoid obtained by principal
component analysis of the point distribution over the tumor
surface andVsphere is the volume of a sphere with the same surface
area as the ellipsoid. For the tumor interface, the Fractional
Anisotropy is defined as,

FA � λ1 − λ2( )2 + λ2 − λ3( )2 + λ1 − λ3( )2
2 λ21 + λ22 + λ23( ){ }1

2

(16)

where λi, i = 1, 2, 3 are the ellipsoid axes. In Figure 3 it is
shown how FA determines the tumor interface correction that
leads to Equation 14. Another factor can be defined which
takes into account the distribution of contrast inside the
tumor,

SC � TVC

TVC,eq
� 6

��
π

√ TVC������
TSC( )3

√ (17)

where TVC is the volume of the region with contrast and TSC is its
total surface area, including inner and outer surfaces.

2.3.4 Ordered Series and Visibility Graphs
Ordered series and the associated visibility graphs (Lacasa et al.,
2008) (Lacasa et al., 2009) that can be extracted from the tumor
interface has been used to further discriminate between the
dynamical models that describe tumor growth (Brú et al.,
2014). In a previous work (Martín-Landrove et al., 2020), it
has been demonstrated that the associated visibility graph,
through its connectivity distribution function P (k)
discriminates between gliomas and meningiomas/
schwannomas, in the exponent of its power law behavior,

P k( ) ~ kγ (18)
In the present work, the analysis of the ordered series and its
associated graph is extended one step further to determine its
scaling properties (Pérez-Beteta et al., 2018). Similarly to
Equation 7, the local standard deviation of the vertex degree
for a subset ϕ on the ordered series can be written as (Brú et al.,
2014) (Estrada, 2010),

Wk ϕ( ) � 〈1
ϕ
∑
kiϵϕ

ki − 〈ki〉ϕ[ ]2〉1
2

ϕ

(19)

It exhibits a power-law behaviour for small ϕ (Brú et al., 2014),

Wk ~ ϕa (20)

FIGURE 4 | Analysis of angular ordered series (A) Connectivity series.
(B) local standard deviation of the connectivity series showing a power-law
dependence on ϕ.

FIGURE 5 | Scaling analysis results for different brain tumor databases:
Glioblastoma multiforme:TCGA-GBM and BraTS 2021, and Glioma: TCGA-
LGG and REMBRANDT, are represented in red color; Meningioma and
Acoustic Schwannoma correspond to local databases, represented in
green color. Large circles indicate average values of data points.
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where a represents the local variance exponent and for ϕ = 2π,Wk

is related to the global variance or heterogeneity of the associated
visibility graph, as shown in Figure 4.

2.3.5 Multifractal Analysis
In order to determine the multifractal scaling exponents for the
one-dimensional ordered series extracted from the tumor
interface, a general procedure of fluctuation analysis is used
(Kantelhardt et al., 2002) (Lopes and Betrouni, 2009). First,
the profile of the ordered series is determined by a
cumulative sum,

R i( ) ≡ ∑i
k�1

rk − 〈r〉( ) (21)

where 〈r〉 represents the mean radius of the tumor interface. The
profile series is then partitioned into Ns ≡int (N/s) segments of
equal length s, the box probability ps (v), which is the sum of the
values rk within each segment v of size s, is defined as,

ps v( ) ≡ R vs( ) − R v − 1( )s( ) (22)

TABLE 1 | Scaling analysis results for dynamical parameters.

Tumor type dF αloc dF + αloc λ

Acoustic Schwannoma 1.99 ± 0.11 0.69 ± 0.03 2.68 ± 0.18 0.46 ± 0.21
Meningioma 1.96 ± 0.11 0.67 ± 0.03 2.63 ± 0.15 0.46 ± 0.21

Grade II and Grade III Glioma* 2.03 ± 0.13 0.73 ± 0.03 2.76 ± 0.23 0.52 ± 0.25
Glioblastoma multiforme† 2.15 ± 0.10 0.84 ± 0.04 2.98 ± 0.18 0.50 ± 0.24
Glioblastoma multiforme‡ 2.11 ± 0.12 0.80 ± 0.04 2.90 ± 0.23 0.49 ± 0.24

Databases are: (*) TCGA-LGG and REMBRANDT, (†) TCGA-GBM and (‡) BraTS Challenge 2021.

FIGURE 6 | Scaling analysis results for brain tumors. Distribution
histograms for dF and αloc.

FIGURE 7 | Scaling behavior of Wsat with tumor size R, according to
Equation 9. Lines represent the trend of the data Values of the global
roughness exponent α are 0.74 ± 0.09 for meningiomas and acoustic
schwannomas (AS + M) and 0.94 ± 0.04 for high grade gliomas and
glioblastoma multiforme (GBM + GL).

TABLE 2 | Scaling analysis results for global dynamics of the tumor
interface width.

Tumor type Wsat (mm) 〈R〉 (mm) α

Acoustic Schwannoma 1.64 ± 0.65 10.07 ± 2.48 0.73 ± 0.15
Meningioma 1.67 ± 0.65 11.19 ± 2.96 0.76 ± 0.11

Grade II and Grade III Glioma* 3.02 ± 1.23 13.21 ± 3.89 1.08 ± 0.15
Glioblastoma multiforme† 3.35 ± 1.00 15.08 ± 3.99 0.91 ± 0.06
Glioblastoma multiforme‡ 2.94 ± 0.98 13.27 ± 3.70 0.93 ± 0.06

Databases are: (*) TCGA-LGG and REMBRANDT, (†) TCGA-GBM and (‡) BraTS
Challenge 2021.
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The scaling properties and exponents can be obtained through
the partition function,

Zq s( ) ≡ ∑Ns

v�1
|ps v( )|q (23)

For large values of s, a power law behavior is obtained for Zq (s),
allowing for a definition of the scaling exponent τ1 (q) that
characterizes the one-dimensional fluctuations,

Zq s( ) ~ sτ1 q( ) (24)
The generalized fractal dimensions are then defined as,

D1 q( ) ≡ τ1 q( )
q − 1

(25)
and the generalized Hurst exponents can be obtained from the
relation,

τ1 q( ) � qh1 q( ) − 1 (26)
The ordered series that can be extracted from any slice represent a
one dimensional sampling of the tumor interface and as a
consequence an incomplete picture of the tumor interface
fluctuations. A more general approach is possible if a two
dimensional detrended fluctuation analysis (Gu and Zhou,

FIGURE 8 | Regularity measures for brain tumors. Circles represent
average values for meningiomas and acoustic schwannomas (green) and high
grade gliomas and glioblastoma multiforme (red).

TABLE 3 | Regularity measures results for different brain tumor types.

Tumor type SR SC SC/SR

Acoustic Schwannoma 0.64 ± 0.14 0.58 ± 0.17 0.90 ± 0.15
Meningioma 0.65 ± 0.17 0.63 ± 0.18 0.96 ± 0.06

Grade II and Grade III Glioma* 0.50 ± 0.20 0.38 ± 0.17 0.78 ± 0.20
Glioblastoma multiforme† 0.54 ± 0.23 0.26 ± 0.15 0.53 ± 0.23
Glioblastoma multiforme‡ 0.60 ± 0.23 0.33 ± 0.18 0.56 ± 0.22

Databases are: (*) TCGA-LGG and REMBRANDT, (†) TCGA-GBM and (‡) BraTS
Challenge 2021.

FIGURE 9 | Distribution histograms for SC/SR. Meningiomas and
acoustic schwannomas are indicated in green and gliomas in red.

FIGURE 10 | Relationship between scaling analysis parameters dF and
αloc with regularity measure ratio SC/SR. Large circles represent average
values: meningiomas and acoustic schwannomas (green) and gliomas (red).
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2006) is performed. In this case, the tumor interface is
parameterized as a two dimensional array with elements r (nϕ,
nZ), the radii of the tumor interface, and is partitioned in two
dimensional segments of size s. The detrended fluctuation in each
segment is given by,

F2 v, w, s( ) � 1
s2

∑s
i�1

∑s
j�1

ϵ2v,w i, j( ) (27)

where ϵv,w (i, j) is the difference between the cumulative sum of r
(i, j) and its trend over the segment (v, w). The average of the
detrended fluctuation over all the segments is,

Fq s( ) � 1
MsNs

∑Ms

v�1
∑Ns

w�1
F v, w, s( )[ ]q⎧⎨⎩ ⎫⎬⎭

1
q

(28)

for q ≠ 0 and for q = 0,

F0 s( ) � exp
1

MsNs
∑Ms

v�1
∑Ns

w�1
ln F v, w, s( )[ ]⎧⎨⎩ ⎫⎬⎭ (29)

For large values of s, Fq behaves as a power law,

Fq s( ) ~ sh2 q( ) (30)

TABLE 4 | Trend parameters for data points in (dF, SC/SR) and (αloc, SC/SR).

Tumor type (dF, SC/SR) (αloc, SC/SR)

M + AS − 0.477 ± 0.041 − 0.552 ± 0.059
GL + GBM − 0.327 ± 0.019 − 0.272 ± 0.025

M,Meningioma; AS, Acoustic schwannoma; GL, High grade glioma; GBM, Glioblastoma
multiforme.

FIGURE 11 | (A) Visibility graph degree distributions P (k) for different
tumor types. A power law behavior region is observed for k < 20 and the
probability decreases abruptly beyond that value. (B) Frequency distributions
for the exponent γ of the power law behavior.

FIGURE 12 | (A) Detail of the power law region for the visibility graph
degree distributions. (B) Exponent γ dependence on tumor type.

TABLE 5 | Visibility graphs results for different brain tumor types.

Tumor type λ a

Acoustic Schwannoma − 2.513 ± 0.078 0.44 ± 0.18
Meningioma − 2.496 ± 0.083 0.51 ± 0.34

Grade II and Grade III Glioma* − 2.676 ± 0.063 0.56 ± 0.36
Glioblastoma multiforme† − 3.012 ± 0.043 0.47 ± 0.14
Glioblastoma multiforme‡ − 2.940 ± 0.049 0.49 ± 0.21

Databases are: (*) TCGA-LGG and REMBRANDT, (†) TCGA-GBM and (‡) BraTS
Challenge 2021.
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The multifractal nature of the fluctuation is characterized by the
scaling exponents τ2 (q) and related to the exponents h2 (q) by,

τ2 q( ) � qh2 q( ) − 2 (31)
and Equation 25 holds for the generalized fractal
dimensions D2 (q).

3 RESULTS AND DISCUSSION

A total of 609 tumor interfaces were analyzed, discriminated as
follows, 176 benign tumors including 99 meningiomas and 77
acoustic schwannomas, all of them coming from local databases,
46 Grade II and Grade III astrocytomas and oligodendrogliomas
(Pedano et al., 2020) (Scarpace et al., 2019) and 387 glioblastoma
multiforme Grade IV tumors (Scarpace et al., 2016) (Baid et al.,
2021). The tumor interfaces were selected by its size, i.e., the

number of points in the tumor interface must be greater than a
certain threshold, allowing for adequate statistics in the
evaluation of morphological parameters such as fractal
dimension dF or local roughness exponent, αloc. Also, the
distribution of points must be as isotropic as possible, with
values of the fractional anisotropy, equation (Işın et al., 2016),
closest to zero. This is performed by the procedure described in
Section 2.3.3 and shown in Figure 3.

3.1 Scaling Analysis Results
Results are shown in Figure 5 which exhibits a high dispersion of
the data. Average values are indicated by large circles and
correspond from left to right to meningioma, acoustic
schwannoma, Grade II and Grade III glioma TCGA-LGG and
REMBRANDT databases), glioblastoma multiforme and high
grade glioma (BraTS 2021 database) and glioblastoma
multiforme (TCGA-GBM database). These average values are

FIGURE 13 | Multifractal and detrended fluctuation analysis results. (A) Typical ordered series extracted from an slice; (B) Generalized fractal dimensions
associated to the ordered series obtained by multifractal analysis using the partition function Z; (C) Two dimensional landscape for r as a function of nZ and nϕ, and (D)
Generalized fractal dimensions obtained by 2D Detrended Fluctuation Analysis. In (B,D), meningiomas and acoustic schwannomas are represented in green and
gliomas in red.

TABLE 6 | Generalized fractal dimensions obtained by Detrended Fluctuation Analysis on one dimensional ordered series, D1 (1) and D1 (2), and two dimensional interface
data space r (nϕ, nZ).

Tumor type D1 (1) D1 (2) D2 (1) D2 (2)

Acoustic Schwannoma 0.88 ± 0.08 0.72 ± 0.16 1.88 ± 0.04 1.80 ± 0.08
Meningioma 0.85 ± 0.12 0.68 ± 0.25 1.90 ± 0.06 1.83 ± 0.11

Grade II and Grade III Glioma* 0.83 ± 0.09 0.63 ± 0.18 1.87 ± 0.04 1.80 ± 0.09
Glioblastoma multiforme† 0.85 ± 0.09 0.67 ± 0.17 1.86 ± 0.05 1.79 ± 0.09
Glioblastoma multiforme‡ 0.85 ± 0.08 0.68 ± 0.16 1.88 ± 0.06 1.81 ± 0.05

Databases are: (*) TCGA-LGG and REMBRANDT, (†) TCGA-GBM and (‡) BraTS Challenge 2021.
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summarized in Table 1. There is a clear difference between
meningiomas and acoustic schwannomas, top of Table 1, with
average parameters dF = 1.97 ± 0.08 and αloc = 0.68 ± 0.11 and
gliomas, bottom of Table 1, with dF = 2.11 ± 0.12 and αloc = 0.80 ±
0.14, a result that is consistent with previous research using
segmentation schemes based on k-means classification alone
and smaller data sets (Torres Hoyos and Martín-Landrove,
2012) (Martín-Landrove et al., 2020) (Martín-Landrove et al.,
2016). This fact is also shown in Figure 6 in the comparison of the
corresponding histograms for dF and αloc. The values of the local
roughness exponent αloc and the fractal dimension dF give
important information about what proliferative-invasive
process is taking place in the dynamics of tumor growth, if
the sum of these parameters is close to the Euclidean
dimension, dE, as reflected by Equation 8, the tumor growth
dynamics corresponds to a ballistic growth model, characterized
by the ansatz of Family-Vicsek (Family and Vicsek, 1991)
(Barabasi and Stanley, 1995). Inspection of Table 1 reveals
that this is indeed the case for Grade II and III gliomas and
glioblastoma multiforme, dF + αloc = 2.92 ± 0.22. In the case of
meningiomas and acoustic schwannomas, the tumor growth
dynamics corresponds to a different growth model since dF +
αloc = 2.65 ± 0.16. Also, fromTable 1, lacunarity values, λ, exhibits
a variation that it is in correspondence with fractal dimension, dF.
Another important feature comes from the results shown in
Figure 7 which depicts the dependence of Wsat with respect to
the average size of the tumor lesion, 〈R〉. Trend of the data
conforms to a power law according to Equation 9 and the results
are summarized in Table 2. There is a clear difference between
tumor groups, for gliomas, α = 0.948 ± 0.038, and for
meningiomas and acoustic schwannomas, α = 0.730 ± 0.087,
which is what has to be expected if the growth dynamics
governing the tumor interface corresponds to a more invasive
process as it happens to be the case for malignant tumors.

3.2 Regularity Measures Results
The relationship between SC and SR are shown in Figure 8. Data
points are dispersed below the diagonal since SC takes into
account both inner and outer surfaces while SR only takes into
account the outer surface (Pérez-Beteta et al., 2018). Data points
along the diagonal correspond to tumors that lack the presence of
either contrast free or necrotic volumes, a condition that occurs
more frequently for meningiomas and acoustic schwannomas
than for gliomas as seen in Figure 8. Large circles in Figure 8
correspond to average values that are summarized in Table 3. The
average values of SR for meningiomas and acoustic schwannomas,
0.64 ± 0.16 and gliomas, 0.57 ± 0.23, do not differ significantly.
On the other hand, average values of SC are 0.61 ± 0.17 for
meningiomas and acoustic schwannomas, and 0.31 ± 0.17 for
gliomas, have a difference that clearly discriminates between
these groups. In order to enhance the difference among tumor
groups, the ratio SC/SR is used, as seen from Table 3. Figure 9
shows frequency distributions for meningiomas and acoustic
schwannomas, with an average value 〈SC/SR〉 = 0.94 ± 0.11,
and gliomas with 〈SC/SR〉 = 0.58 ± 0.23. Since regularity measures
are related to the fractal properties of the tumor interface (Pérez-
Beteta et al., 2018) there must be a certain correlation to the
scaling parameters dF and αloc. For tumors with SC/SR close to 1,
fractal dimension, dF, should be close to 2 and αloc should have its
lowest value, i.e., tumor surface is regular and smooth. As SC/SR
decreases it is expected an increase in the scaling parameters.
Figure 10 shows this trend for the dependence of dF and αloc on
SC/SR. The slopes that characterize the linear trend are
summarized in Table 4.

3.3 Ordered Series, Visibility Graphs and
Multifractal Analysis Results
Ordered series were extracted from the tumor interface for those
slices that contain the maximum number of interface points,
visibility graphs were generated and the degree distribution
functions were obtained. Results for the average of P (k)
distributions obtained for each of the different tumor types are
shown in Figure 11A. For values of the connectivity index k > 20,
P (k) decays abruptly due to the fact that the ordered series has a
finite size which limits the probability P (k). For values of the
connectivity index k < 20 all distributions exhibit a power law
behavior as shown in Figure 12A with slopes that are
summarized in Table 5 and shown in Figure 12B. If the
tumor types are discriminated only into two classes: one
including meningiomas and acoustic schwannomas and the
other including high grade gliomas and glioblastoma
multiforme, the slope distributions are clearly distinct for each
tumor class as shown in Figure 11B. This result suggest the
possibility of using γ as a possible parameter that characterizes
tumor interface dynamics supported by the result shown in
Figure 12B. Multifractal analysis results are summarized in
Figure 13. As expected, the evaluation of generalized fractal
dimensions for the one dimensional sampling of the tumor
interface, Figure 13A, does not provide with enough
information to discriminate between these two classes as seen
in Figure 13B and summarized in Table 6. On the other hand,

FIGURE 14 | Relevant morphological and scaling parameters used to
discriminate between meningiomas and acoustic schwannomas (green) and
gliomas (red). Average values are represented as large dots.
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two dimensional detrended fluctuation analysis of the tumor
interface yield some differences in the average values of D (q), as
shown in Table 6 and Figure 13D, that possibly could be
improved by an adequate sampling of the tumor interface,
i.e., higher image longitudinal and transverse resolution. In
any case, generalized fractal dimensions do not discriminate
appropriately between tumor types.

4 CONCLUSION

A method based on dynamic quantum clustering is used to
perform contrast enhanced MRI of brain tumors. Tumor
interfaces can be classified according to scaling analysis
parameters such as the fractal dimension, dF and the local
roughness exponent, αloc which clearly differentiate between
the growth dynamics of different tumor types adding support
of a ballistic growth model for gliomas and glioblastomas,
following the Family-Vicsek ansatz and a non-ballistic growth
model for other neoplasias such as meningiomas and acoustic
schwannomas. Among the regularity measures, the ratio SC/SR
exhibit some correlation with the scaling parameters and clearly
discriminates between gliomas and meningiomas or acoustic
schwannomas. The relation between dF, αloc and SC/SR is
shown in Figure 14. Parameters obtained in series extracted
from the tumor interface are size sensitive but nevertheless
exhibit differences that could be used for tumor classification
and in particular its growth dynamics, through the exponent γ.

Generalized fractal dimensions obtained by two dimensional
detrended fluctuation analysis could possibly give significant
differences if the tumor interface could be sampled with
higher resolution. Further research should take into account
combination of different MRI modalities.
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