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Abstract: In this work, the authors propose the use of technological resources to develop compu-
tational thinking following the steps or phases of problem-solving for first-year students. During
the development of the activities using technological resources (Arduino board, sensors, electronic
devices, and mBlock) the students carried out activities, such as algorithm development and pro-
gramming of the Arduino board and sensors from a friendly and playful interface such as the mBlock,
as well as the debugging of programs until obtaining the expected results. These activities had an
impact on the cognitive processes, practices, and technological perspectives of the students. Causality
has been shown to exist between computational thinking skills and problem-solving phases in an
environment of engineering students entering college. For the analysis of the relationship between
computational thinking skills and problem-solving, Pearson’s statistical correlation test was used
through SPSS software.

Keywords: computational thinking; problem-solving; first-year students; technological resources;
technological projects; skills; STEM

1. Introduction

In Latin America, countries are heterogeneous and each country is heterogeneous
within itself. There are differences between rural and urban areas, students of high and
low socioeconomic levels, different cultural levels, and pronounced differences between
rural and urban schools concerning educational quality. In the last two PISA assessments
in Latin American countries, the results showed that Peru was the most critical, where 90%
of students did not achieve the required level of reading skills, and 95% of students did not
achieve the required level of mathematical skills, considered key for citizens to develop
in today’s world and contribute to the development of the country [1]. Inequalities in the
education sector manifest themselves in various ways, one of them being the effective use
of ICTs, not only as simple users of technologies, but also to strengthen cognitive skills [2].
These inequalities in the education sector are very marked in the regions of Peru, resulting
in poor academic training in students who are entering public universities in the Huancavel-
ica region, where students have low skills in problem-solving, mathematical reasoning,
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logic, reading comprehension, abstraction skills, critical thinking, pattern recognition, and
teamwork [3,4].

In recent studies, computational thinking (CT) is receiving greater interest at all levels
of the education sector as a fundamental support in strengthening problem-solving skills in
students, even more so in students with limited competencies in mathematical reasoning
and logic [5,6]. CT is the type of thinking that helps in solving problems, where solutions
are represented as steps and computational algorithms [7,8]. In the latest definitions of CT,
apart from computational skills, the authors highlight the development of competencies
in people; these competencies are skills to face complex problems, persistence, treatment,
and confidence in solving complex problems. Therefore, CT is an important skill for
problem-solving in academic and social fields [9–11], not only for STEM students but also
for students from other disciplines [12,13].

Several authors state that computational thinking and problem-solving techniques
complement each other in the generation of academic competencies in students [14,15].
One of the most used techniques in problem-solving is the proposal by Pólya [16], which is
formed by four phases or processes for solving problems in a sequential and orderly manner.
The phases are: understanding the problem, preparing the plan, executing the plan, and
reviewing of the solution. The advantages of using the Pólya method allows engineering
students to improve their analytical capacity and understanding of the problem, strengthen
their skills to propose strategies in an orderly and sequential manner in problem-solving,
employ strategies to successfully implement a business plan developed in the previous
phase, and finally strengthen the critical capacity to evaluate the functionalities of the
product and its respective validation [5].

Concerning the use of technological resources for solutions STEM, Sobreira et al. [4]
presented the Snap4 Arduino visual programming platforms to be used by students starting
their engineering careers, adding the AppInventor tool and IoT (Internet of Things) devices
for activities related to their geographical area. Diaz et al. [17] promotes the Codeblocks tool
integrated with Tinkercad, which generates motivation in students, the key factors being
diversity in the composition of the student group, availability of 3D printers to materialize
designs, and a test environment. Gao et al. [18] explored AppInventor for integration into
undergraduate computer science and engineering courses, thereby introducing computa-
tional thinking in the context of creating mobile apps, and recommended it for beginning
students to help reduce barriers to programming. They also stated that block programming-
based application development reduces syntax errors and encapsulates mobile device
functions in high-level abstractions that are easy to incorporate into applications. Recently,
Trilles et al. [19,20] promoted computational thinking at pre-university students through
the Sucre4Stem project, using block programming, assembly of sensors and actuators in
microcontrollers, network connectivity, and remote data sharing. Through the components
of Sucre4Stem, students designed, created, and programmed collaborative sensorization
projects that recreate real situations of the IoT.

This article develops computational thinking skills following the phases of problem-
solving in students recently entering the engineering career at a public university located
in the Andes of Peru. The educational strategy is based on the proposal of technological
projects in the classroom; once the technological projects were finished, the computational
thinking skills and problem-solving phases were evaluated in two periods in 2021-II and
2022-I, identifying relationship between computational thinking skills and problem-solving
phases using Pearson’s correlation.

2. Review of Literature
2.1. Computational Thinking in Higher Education

Several authors have expressed the importance and benefits of computational thinking
in higher education, highlighting the ability of abstraction and algorithmic thinking in
strengthening reading comprehension and in solving complex problems following algo-
rithmic methods [21–25]. In addition, Wilson et al. [26] in an applied study pointed out
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that programming helps to understand and develop activities of mathematics and other
disciplines that can be abstract or complex; this involves developing programs through
the computer to solve problems in mathematics or other areas. Shyamala et al. [3] pointed
out that the use of tools based on block programming and hardware generates interest
and motivation in students, as well as teamwork and problem-solving through abstraction,
decomposition, and algorithmic thinking skills. It also directly relates to the develop-
ment of common skills through creative programming and innovation [27–29]. Finally,
Kules [30] added critical thinking as a form of reasoning and exchange of ideas before
solving problems through computational thinking skills. Concerning the key skills of CT,
most researchers consider abstraction, decomposition, algorithmic design, generalization,
and evaluation [31,32]. Abstraction is the process of deciding or ignoring the details or char-
acteristics of a thing; decomposition is the process of breaking down a complex problem
into much smaller and more feasible parts; generalization includes discovering similarities
or patterns in any complex problem or broken problem; algorithmic design is a set of rules
or instructions, well posed, ordered sequentially, and finite, which allows a task to be
performed or executed following steps established successively in a safe way to solve an
identified problem; and evaluation is recognizing and determining the scope of performing
processes, in terms of efficiency and use of resources.

2.2. Problem-Solving

Problem-solving or solving a problem is a cognitive process to obtain a goal for the
individual who solves it [33]. The processes of problem-solving are shaped by cognitive
factors: planning, critical thinking, and debate to make decisions [34].

In the scientific literature, problems and problem-solving techniques or methods have
been contextualized [11,35–39]; where each problem has its particularity, so there is no
single procedure that guarantees its solution [40], but several procedures indicate the steps
or phases to follow in order to solve a problem [41]. In general, four stages, phases, or
processes can be identified in the solution of any problem: Understanding the problem,
drawing up the plan, executing the plan, and reviewing the solution [5,16,42]. These four
phases allow solution of the identified problem in a sequential way. The advantages of
using Pólya’s method in the resolution of problems are that it allows students to improve
their analytical capacity and understanding of the problem, strengthen skills to propose
strategies in an orderly and sequential way in the resolution of problems, use strategies
to correctly execute a business plan drawn up in the previous phase, and strengthen their
critical capacity to evaluate the functionalities of the product and its respective validation.

2.3. Computational Thinking and Problem-Solving

Wing [12] defined computational thinking as problem-solving, systems design, and un-
derstanding human behavior using the fundamental concepts of computer science. Several
authors have also contributed to the definition, pointing out that one of the fundamental
reasons for computational thinking is problem-solving, and to solve problems, a set of
processes or phases must be followed to reach the solution. Additionally, computational
thinking is joined by other problem-based learning approaches, which strengthen crit-
ical thinking, considered as a phase before computational thinking. In addition, these
approaches strengthen communication skills when presenting project results. They can also
provide opportunities for teamwork, searching, analyzing, synthesizing research materials,
and lifelong learning [12,13,43,44]. Rsecently, Román-González [45] defined computational
thinking as “the (human) ability to solve problems and express ideas making use of con-
cepts, practices, and perspectives of Computer Science”. In addition, Rabiee [46] stated
that the applicability of computational thinking should be seen in practice as a universal
concept and a real-world problem-solving tool.

From that perspective, computational thinking has gained popularity and has been
emphasized as an effective means of understanding and solving complex problems by
using computer science concepts and techniques [47]. As a computational process, com-
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putational thinking begins by confronting problems, the solution of which involves the
use of the skills of decomposition, generalization, abstraction, automation, algorithms, and
evaluation [47–50]. Based on the similarity between computational thinking skills and
problem-solving phases, which has also been recognized in the research of Voogt [51], it
is stated that computational thinking is a specific form of problem-solving, where each
computational thinking skill is located within a problem-solving process or phase, but also
provides a more specific description of learning processes that reflect techniques and con-
cepts of computer science. From such a perspective, a student involved in computational
thinking can also be considered involved in the problem-solving phases [52]. To know the
relationship between computational thinking skills and problem-solving phases, different
studies have been analyzed, whose results are shown in Table 1. Abbreviations for compu-
tational thinking skills are ABS (Abstraction), DES (Decomposition), GEN (Generalization),
ALG (Algorithmic Design), and EVA (Evaluation). Concerning the problem-solving phases,
the authors agree with most of the phases.

Table 1. Problem-solving phase and computational thinking skills.

Phases of Resolution of Problems Computational Thinking Skills

By Ubaidullah [14] ABS DES GEN ALG EVA
Understanding/definition X
Planning X X
Design X
Codification X X X
Evaluation X X
By Jeng [53] ABS DES GEN ALG EVA
Recognition of the problem. X
Solution strategy development X X
Organization of knowledge about the problem X
Solution evaluation X
Por Joshua [15] ABS DES GEN ALG EVA
Simplifying the problem X
Dividing the problem into smaller parts X
List of steps to resolve X
By Maharani [54] ABS DES GEN ALG EVA
Decision on the subject matter X
Solution formulation X
Division of complex problems X
Step-by-step design to solve the problem X
Identification to correct errors X
By Kale [52] ABS DES GEN ALG EVA
Understanding the problem X
Plan and monitoring X X X
Execution X
Check/reflect X
By Rabiee [46] ABS DES GEN ALG EVA
Identification/understanding of the problem X
Breakdown of the main problem X
Solution development X X
Implementation X X
Validation X
By Pedaste [55] ABS DES GEN ALG EVA
Problem identification X X
Selection of strategies X
Strategy execution X
Review of results X X

From the results obtained from Table 1, approximately 30 phases have been found that
indicate the steps or phases to follow to solve a problem. The other phases were mentioned
with different vocabularies (synonyms) by the authors. Therefore, in any problem four
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stages or phases can be identified: understanding the problem, drawing up the plan,
executing the plan and reviewing the solution; these four phases can be seen in other
research [5,16,42,51], For each of the four phases of problem-solving there is similarity or
equivalences identified in the study. The phase of understanding of the problem is similar
or equivalent to the phase of “understanding/definition”, “recognition of the problem”,
“simplification of the problem”, “decision on the object”, “understanding of the problem”,
“identification/understanding of the problem”, and “identification of the problem”. The
plan development phase is similar to the “planning” phase, “development of solution
strategies”, “division of the problem into smaller parts/list of steps to solve”, “formulation”
the solution/vision of complex problems”, “plan and monitoring”, “breakdown of the
main problem”, and “selection of strategies”. The implementation phase of the plan is
similar or equivalent to the phase of “design and coding”, “step-by-step design to solve the
problem”, “execution”, “solution development/implementation”, and “strategy execution”.
The revision phase of the solution is equivalent to the phase of “evaluation”, “evaluation
of the solution”, “identification to correct errors”, “verification/reflection”, “validation”,
and “review of results”. Table 2 summarizes the relationship between the four phases of
problem-solving and the five key skills of computational thinking.

Table 2. Summary of the relationship between problem-solving phases and computational
thinking skills.

Problem-Solving Phases Computational Thinking Skills

ABS DES GEN ALG EVA

Understanding the problem X
Preparation of the plan X X
Implementation of the plan X
Solution Review X

3. Materials and Methods

The participants in this research were 37 students of the industrial engineering career
of the Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo (UNAT)
and 49 students of the systems engineering career of the Universidad Nacional de Huan-
cavelica (UNH), both located in the province of Tayacaja in the Huancavelica region, in
the Andes of Peru. The participants were students recently entering UNAT and UNH in
the period 2021-II and 2022-I, respectively, and were students in the first year of studies
at the university. The students’ sampling was intentional, not probabilistic, according to
the authors’ criteria; that is, the similarity of careers, students of the teacher (author) in
the semester, etc. Therefore, under these conditions, the investigation could be carried
out efficiently.

To know the initial computational thinking skills of the newly admitted students,
5 reagents on computational thinking were used [56–58]. These reagents are related to the
skills of decomposition, abstraction, generalization, algorithmic design, and evaluation of
computational thinking.

For the development of technological projects, students used technological resources
consisting of hardware and software. The hardware used were Arduino, environment
temperature sensors, distance sensors, obstacle detection sensors, LEDs, displays, etc. For
software, the mBlock was used, a programming interface based on blocks which allows
interaction with the sensors through Arduino. The use of a block-based programming
interface allowed students to focus on computational concepts rather than the syntax of
programming languages, while the presence of electronic sensors and output devices al-
lowed students to enthusiastically view the actual movement/consequence of the program
occurring in the physical world, generating immediate visual feedback from the program-
ming and motivating beginner students to more easily test their hypothesize and refine
their ideas.
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The instrument used for data collection corresponding to computational thinking
skills is the Computational Thinking Test (TPC) of Román-Gonzalez [59]. The test has been
validated in criterion and convergence [60,61]. Initially (version 1.0) the instrument was
composed of 40 items in length; currently, the instrument has 28 items (version 2.0). Each of
the 28 items was designed and characterized in five axes (computational concept addressed,
item interface-environment, style of the response alternatives, existence or non-existence
of nesting, and required task). The instrument is correctly adapted to the cognitive level
of newly admitted students, mostly from rural schools with low educational quality, who
range in age from 16 and 17 years old.

The instrument for data collection corresponding to problem-solving is based on the
proposal of Molina [5,62], and structured according to the problem-solving method of
Pólya [16]. This method is composed of four phases: understanding the problem, preparing
the plan, executing the plan, and verifying the solution. It is formed by 22 items in total.
The phase of understanding the problem consists of 7 items, the phase of preparation of
the plan consists of 5 items, the phase of execution of the plan consists of 5 items, and the
phase of revision of the solution consists of 7 items. Each item is answered according to the
Likert scale, where a 1 is a “no” and a 5 is a “yes”, while the intermediate values take the
values according to the degree of agreement or disagreement.

For the processing of data obtained from the research, statistical tools were used,
such as descriptive statistics (mean and standard deviation), as well as inferential statistics
(Pearson’s correlation) to correlate computational thinking skills and problem-solving. The
computer tool for data interpretation that was used is the statistical software SPSS in its
25 version.

4. Results
4.1. Educational Strategy through the Proposal of Technological Projects

Before assigning the technological projects to the group of students, at the beginning
of the semesters or academic periods 2021-II and 2022-I an initial test was applied based
on five items to determine the preliminary computational thinking skills of recently ad-
mitted students at the university. Table 3 shows the technological projects proposed to the
students according to the results obtained in the initial test. This form of distribution of
technological projects was carried out with the purpose that the members of each group
start with the same skills (rhythms, styles, and learning processes) so that they had the
same opportunities to execute the activities of the projects, and so that the teachers could
use various educational strategies to meet the academic needs of each group. Technological
projects are related to the problem of the context of students.

The execution of the technological projects was completed over 16 weeks in the class-
room, following the four phases of problem-solving, for both semesters. The activities of
the phase of understanding the problem were distributed over 5 weeks. In this phase,
the classroom teacher provided exercises on abstraction. The students presented the
problem statement of their projects through visual organizers. The activities of the prepa-
ration phase of the plan lasted 2 weeks. In this phase, the teacher provided exercises
of decomposition and generalization. Students identified activities from other projects
to use in their projects, where they presented a set of activities to solve the identified
problem. The activities of the execution phase of the plan lasted 5 weeks. In this phase,
the teacher provided practical exercises on algorithmic design applied to the common
tasks of people [32], as well as exercises using the mBlock programming environment,
Arduino board, and uses of sensors (temperature, humidity, ultrasound, light, obstacle,
etc.). The students presented advances of their projects, showing programs in mBlock,
circuit implementations, programming of microcontrollers and sensors. The activities of
the review phase of the solution lasted 1 week. The students evaluated the operation of
their prototypes, and the teacher provided feedback to improve the operation of their
prototypes. Figure 1 shows the results of the executed technological projects identified
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by their ID, which consist of prototypes developed by students in the 2021-II and 2022-I
semesters, including hardware and software components.

Table 3. Proposal of technological projects.

Initial Test Results ID Technological Projects 2021-II

Correct answers
P1–2021 Monitoring of vegetable production in greenhouses in

the city of Pampas, Tayacaja, Huancavelica region.

P2–2021 Implementation of a water level monitoring prototype
in the Viñas reservoir of the city of Pampas, Tayacaja.

1 incorrect answer P3–2021 Implementation of a control and security system in a
food market.

2 incorrect answers P4–2021
Prototype of automatic switching off and on of public
lighting for the city of Pampas,
Tayacaja, Huancavelica.

3 incorrect answers P5–2021 Smartboard for learning in single-teacher classrooms
in the city of Pampas, Tayacaja, Huancavelica.

4 incorrect answers P6–2021 Monitoring of solid waste in the city of Pampas,
Tayacaja, Huancavelica.

Initial test results ID Technology projects 2022-I

Correct answers
P1–2022

LED games in the teaching of basic mathematical
operations for primary school students of the city of
Pampas, Tayacaja, Huancavelica.

P2–2022 Prototype of automatic distance detection alarm for
vehicles in the Huancavelica region.

1 incorrect answer P3–2022 Smart cane with sensors for visually impaired people
in the city of Pampas, Tayacaja, Huancavelica.

2 incorrect answers
P4–2022

Monitoring of temperature and humidity with an
automated irrigation system in vegetable production
in the city of Pampas, Tayacaja, Huancavelica.

P5–2022 The animal safety system in the Huancavelica region.

3 incorrect answers
P6–2022 Monitoring and control of humidity and temperature

in the greenhouse in the Huancavelica region.

P7–2022 Home automation for the security and tranquility of
homes in the city of Pampas, Tayacaja, Huancavelica.

4 incorrect answers
P8–2022

Implementation of a biosafety prototype against
COVID-19 in the professional school of
systems engineering.

P9–2022 Monitoring of solid waste in homes in the city of
Pampas, Tayacaja, Huancavelica.

4.2. Evaluation of Computational Thinking and Problem-Solving

In the 2021-II semester, the data collected from computational thinking skills and
problem-solving phases correspond to 37 students of the industrial engineering career,
while for the 2022-I semester, the data collected correspond to 49 students of the systems
engineering career. Table 4 shows the reliability according to Cronbach’s alpha of the data
collected about computational thinking and problem-solving.
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P1-2021; (b) Project ID P2-2021; (c) Project ID P3-2021; (d) Project ID P4-2021; (e) Project ID P5-2021;
(f) Project ID P6-2021; (g) Project ID P1-2022; (h) Project ID P1-2022; (i) Project ID P1-2022; (j) Project
ID P1-2022; (k) Project ID P1-2022; (l) Project ID P1-2022; (m) Project ID P1-2022; (n) Project ID
P1-2022; (o) Project ID P1-2022.

Table 4. Cronbach’s alpha of collected data.

Computational Thinking

Semester Alfa de Cronbach N of elements
2021-II 0.793 28
2022-I 0.799 28

Problem-Solving

Semester Alfa de Cronbach N of elements
2021-II 0.965 24
2022-I 0.924 24

The evaluation of computational thinking skills was carried out through the method
of Román-Gonzalez [59], where, the ability is related to the 28 items of the test [63,64]
generalization (4–6, 8–12, 14, 15, 17–18, 20, 22, 23 and 25–28), algorithmic design (1–28), and
evaluation (3, 7, 10, 11, 15, 16, 19, 20 and 23–28). Figure 2 shows the average correct percent-
ages of items related to computational thinking skills in the 2021-II and 2022-I semesters. In
the most recent semester, the students got more than 60% of skills right. It is also observed,
in the period 2021-II, that the highest percentage of successful ability is related to abstrac-
tion, followed by algorithmic design, generalization, decomposition, and evaluation, while
for the period 2022-I, the highest percentage of successful ability is related to algorithmic
design, followed by generalization, evaluation, abstraction, and decomposition.
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For the evaluation of the phases of problem-solving, data were collected according to
the Likert scale, where a 1 is a “no” and a 5 is a “yes”, while the intermediate values range
according to the degree of agreement or disagreement. Table 5 shows the averages rated for
each phase of problem-solving by students in the 2021-II and 2022-I semesters. The problem-
solving phases are abbreviated: PRO = Understanding the problem, ELA = Elaboration of
the plan, EJE = Execution of the plan, and REV = Review of the solution. For the period
2021-II, the phase of understanding the problem had the best assessment, followed by the
revision of the solution, execution of the plan, and preparation of the plan. Regarding
the standard deviation, the phase of understanding the problem has the lowest value
(0.73152), followed by preparation of the plan (0.87987), revision of the solution (0.91321),
and execution of the plan (0.91936). For the period 2022-I, the execution phase of the plan
presented the best evaluation by the students, followed by understanding the problem,
reviewing the solution, and preparing the plan. Regarding the standard deviation, the
phase of revision of the solution has the lowest value (0.68461), followed by understanding
the problem (0.68602), execution of the plan (0.69586), and preparation of the plan (0.74024).
For the semesters 2021-II and 2022-I, the average of the problem-solving phases is almost
homogeneous in their assessment according to the Likert scale.

Table 5. Total average of the problem-solving phase.

2021-II 2022-I

N Mean Deviation
Standard N Mean Deviation

Standard

PRO 37 3.5981 0.73152 49 3.6765 0.68602

ELA 37 3.3838 0.87987 49 3.2531 0.74024

EJE 37 3.5243 0.91936 49 3.7510 0.69586

REV 37 3.5246 0.91321 49 3.5133 0.68461

4.3. Evaluation of Pearson’s Correlation between Problem-Solving and Computational Thinking

Table 6 shows the results of Pearson’s statistical correlation test between computational
thinking skills and problem-solving phases. For the period 2021-II, there is a moderate
positive correlation between the execution phase of the plan and the algorithmic design
ability, a weak positive correlation between the revision phase of the solution and the
ability to evaluate, and a weak positive correlation between the phase of understanding
the problem and the ability to abstract. There is no correlation between the plan-making
phase and the skills of decomposition and generalization. For the period 2021-II, there is a
moderate positive correlation between the execution phase of the plan and the algorithmic
design ability, a weak positive relationship between the solution review phase and the
evaluation skill, a weak positive relationship between the phase of understanding the
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problem and the ability to abstract, and a weak positive correlation between the plan-
making phase and the skills of decomposition and generalization.

Table 6. Pearson’s correlation.

2021-II 2022-I

ABS DESC GEN ALG EVA ABS DESC GEN ALG EVA

PRO

Pearson
correlation 0.352 * 0.366 **

Sig.
(bilateral) 0.033 0.010

N 37 49

ELA

Pearson
correlation 0.292 0.287 0.340 * 0.339 *

Sig.
(bilateral) 0.079 0.085 0.017 0.017

N 37 37 49 49

EJE

Pearson
correlation 0.491 ** 0.492 **

Sig.
(bilateral) 0.002 0.000

N 37 49

REV

Pearson
correlation 0.381 * 0.415 **

Sig.
(bilateral) 0.020 0.003

N 37 49

**. The correlation is significant at level 0.01 (bilateral). *. The correlation is significant at the 0.05 level (bilateral).

5. Discussion

According to the statistical results of the Pearson correlation, the abilities of abstraction,
decomposition, generalization, algorithmic design, and evaluation are related to the phases
of problem understanding, plan development, plan execution, and solution review, respec-
tively. In the phase of comprehension of the problem, the ability to abstract the problematic
situation of the technological project using mental maps, highlighting the main problem,
causes, and effects, was observed in the students [65]; these activities have strengthened
abstraction skills in students [14]. In the phase of elaboration of the plan, the students
proposed various solutions, breaking them down into a set of manageable activities; for
example, they proposed the activity of acquisition of electronic devices, hardware design,
hardware implementation, program development, etc. These activities strengthened the
decomposition ability in the students [15,53]. In the plan development phase, the students
searched for background or solutions in other projects, identifying activities to be applied
in their projects; in this way the students strengthened their generalization skills [52]. In
the execution phase of the plan, the students executed or developed activities established
in the previous phase. These activities were carried out in an orderly manner, step by
step. First, they implemented the Arduino board with sensors; second, they developed
algorithms; third, they debugged programs, etc. This way of working in an orderly manner,
step by step, strengthened the ability of algorithmic design in students [46]. In the solution
review phase, the students evaluated the operation of the components of their projects;
for example, the circuitry and programming interface based on mBlock were assessed. In
addition, they evaluated the final product or prototype integrated into a model. These
activities strengthened the evaluation ability of the students [14,55].
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6. Conclusions

The execution of technological projects following the problem-solving phases has
contributed to the development of computational thinking skills in engineering students
recently admitted to the university. The use of technological resources, such as the Arduino
board, electronic sensors, and mBlock software to solve problems in the context of their
city or region, motivated the students to carry out activities such as the development of
algorithms, programming the Arduino board, configuration of sensors, and development of
a friendly and playful interface through the mBlock, as well as the debugging of programs
until the expected results were obtained. This set of activities had an impact on the cognitive
processes of the students (reasoning, decision making, understanding of the environment,
logic, etc.), as well as in technological practices and perspectives. These activities could
easily be developed in algorithms, introduction to programming, information management,
and related courses, and would be a practical platform to help students acquire important
skills in the current context of the 21st century, not only for engineering students but also
in other disciplines such as social sciences, communications, arts, etc.

Problem-solving using technological resources fosters the development of computa-
tional thinking in engineering students recently admitted to college. To obtain optimal
results in the development of computational thinking skills in students, the classroom
teacher must constantly monitor the execution of projects at each stage or phase of problem-
solving. The teacher must also provide feedback on the project activities, especially for
students from remote or rural areas who are often interacting with electronic devices and
programming software for the first time.

During the application of the educational strategy in the classroom through technolog-
ical projects for the development of computational thinking, it is recommended to apply an
initial test to determine the computational thinking skills of students recently admitted to
university. According to the results of the test, groups or work teams should be formed to
execute the project in the classroom. In this way, there will be groups with homogeneous
members with similar rhythms, styles, and learning processes. In addition, the teacher will
be able to use various educational strategies to meet the academic needs of each group.

The limitations of the research: The observation and evaluation of the students were
online due to COVID-19. In addition, only 89 students participated. The sampling of
students was intentional because the teacher had not taught other students in the scenario
of a pandemic.
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