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Abstract: Neurodegenerative diseases, tauopathies, constitute a serious global health problem.
The etiology of these diseases is unclear and an increase in their incidence has been projected
in the next 30 years. Therefore, the study of the molecular mechanisms that might stop these
neurodegenerative processes is very relevant. Classification of neurodegenerative diseases using
Machine and Deep Learning algorithms has been widely studied for medical imaging such as
Magnetic Resonance Imaging. However, post-mortem immunofluorescence imaging studies of the
brains of patients have not yet been used for this purpose. These studies may represent a valuable
tool for monitoring aberrant chemical changes or pathological post-translational modifications of
the Tau polypeptide. We propose a Convolutional Neural Network pipeline for the classification
of Tau pathology of Alzheimer’s disease and Progressive Supranuclear Palsy by analyzing post-
mortem immunofluorescence images with different Tau biomarkers performed with models generated
with the architecture ResNet-IFT using Transfer Learning. These models’ outputs were interpreted
with interpretability algorithms such as Guided Grad-CAM and Occlusion Analysis. To determine
the best classifier, four different architectures were tested. We demonstrated that our design was
able to classify diseases with an accuracy of 98.41% on average whilst providing an interpretation
concerning the proper classification involving different structural patterns in the immunoreactivity
of the Tau protein in NFTs present in the brains of patients with Progressive Supranuclear Palsy and
Alzheimer’s disease.

Keywords: Convolutional Neural Networks; Guided Grad-CAM; Occlusion Analysis; neurodegenerative
diseases; tauopathies

1. Introduction

Neurodegenerative diseases (NDs), known as tauopathies, constitute a group of more
than 20 proteinopathies that represent a major global public health problem; among the
most prevalent are Alzheimer’s disease (AD) and Progressive Supranuclear Palsy (PSP). In
AD, the Tau protein undergoes modifications that cause its aggregation and the formation
of Neurofibrillary Tangles (NFTs), which together with amyloid beta positive plaques are
the histopathological hallmark of this disease [1–4]; likewise, gliosis and neuronal loss are
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observed [5]. These structures accumulate in the entorhinal cortex and extend to the hip-
pocampus, amygdala, temporal cortex and the isocortex [6]; their accumulation generates
alterations in physiological functions that are reflected in the progressive loss of memory
and alterations in executive and cognitive functions [7]. Regarding PSP, neuronal loss,
gliosis and balloon-shaped and flame-shaped NFT composed of paired helical filaments
and straight filaments can be observed, with Tau protein being the main constituent [8].
The histopathological hallmark of PSP is the presence of tufted astrocytes [9] which pre-
dominate in cortical and striatal areas [10]. However, NFTs affect the subthalamic nucleus,
basal ganglia and brainstem [11]. The clinic of PSP is highly variable, including balance
disturbances with falls, rigid hypokinetic syndrome, behavioral and cognitive disorders,
ocular motility disorders, secondary disposition, language disorders, dysphasia and sleep
disorders [12].

The epidemiological data from [13] highlight the need for an accurate differential
diagnosis to establish a prognosis and implement appropriate treatment. The challenge
of differential diagnosis is to distinguish the similarities shared by different types of NDs,
such as brain atrophy, protein aggregation in specific regions of the brain and protein
inclusions detected in the cerebrospinal fluid (CSF) [14]. The efficacy of treatment against
neurodegeneration depends on the precise understanding of the molecular mechanisms
involved in each disease group, which is not yet fully understood [15].

In the case of tauopathies, pathological protein aggregation is considered a key event.
Several research groups [16,17] have concluded that the polymeric behavior of the Tau
polypeptide, which constitutes the paired helical filaments that precede the formation
of NFT, is due to a series of incorrect post-translational modifications (PTMs) in the Tau
protein. These events mainly include phosphorylation, endogenous proteolysis or con-
formational changes that confer aggregation behavior to the protein in insoluble fibrillar
filaments [18,19]. However, these mechanisms continue to be studied in brain tissue in
post-mortem cases or by transgenic models of neurodegenerative diseases [20].

Elucidation of the differences between pathological PTMs in the Tau protein that
leads to its fibrillar polymeric form is fundamental to understanding the pathogenesis and
differential diagnosis between the different tauopathies, representing a critical challenge
for therapeutics [21].

Machine and Deep Learning, specifically Convolutional Neural Networks (CNNs),
have been used to address the problem of differentiating NDs in medical imaging, such
as Magnetic Resonance Imaging (MRI), Computerized Tomography (CT) and Positron
Emission Tomography (PET), which are noninvasive means for detecting changes in brain
function [22–24]. These imaging modalities provide a macroscopic view of brain atrophy.
Alternatively, the way to explore at the molecular scale is based on immunofluorescence
post-mortem brain (IPMB) microscopy, which is a technique that uses antibodies directed
against chemical events occurring in specific proteins to visualize them in the cells of the
tissues studied [25]; thus, the analysis of NDs’ pathogenesis depends on these techniques
and experimental protocols to provide us with a molecular understanding.

The ability of immunofluorescence to discriminate between cells, organelles or molecules
within tissues and to analyze their interactions through the obtained images makes it an
ideal data format for more advanced computational analysis [26]. In particular, the use of
Deep Learning (DL) methods for the classification and differentiation of tauopathies may
lead to finding particular features of the behavior of the Tau protein in the formation of NFTs,
which currently only depends on the visual appreciation of biochemical and biomedical
experts with a possible risk of subjectivity among the different criteria for interpretation.

Deep Learning is a computational paradigm that has been exploited for medical image
classification [14,22,27,28], specifically CNNs have contributed significantly to the areas of
medical image understanding and many CNN-based approaches lead the way in many
image understanding challenges for diseases such as cancer, autoimmune diseases, stroke
lesions and brain diseases [28]. Moreover, the use of Explainable Artificial Intelligence
(XAI) algorithms, while scarce, has provided a way to elucidate the behavior of deep
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neural networks [29]. Moreover, DL models have outperformed human experts in many
image understanding tasks, e.g., CNN-based models such as CheXNet for classification of
ailments of the chest have achieved better results compared to the average performance of
human experts [30,31].

Within the context of DL, Transfer Learning is a technique that has also been exploited
for medical image classification [32]. It consists of taking a pre-trained neural network, on
a source domain, such as the dataset ImageNet [33], which contains more than fourteen
million labeled images with more than twenty thousand categories [34], and taking that
pre-trained model to a different domain, usually with a limited number of images. For
example, in neurosciences, Transfer Learning based on AlexNet [35], was used to detect
Alzheimer’s disease using the dataset ImageNet in [36]. Additionally, Zhuang et al. [33]
show that most classification problems on medical images use some variation of Transfer
Learning with fine-tuning.

1.1. Immunodetection and Fluorescence Miscoscopy

The field of DL for classification of immunofluorescence microscopy imaging has been
widely studied for HEp-2 cell classification. Rahman et al. [37] provide an extensive review
of DL models developed for classification of HEp-2 cells between the years 2013 and 2019.
Architectures such as ResNet-50 without a pre-processing step have achieved an accuracy of
98.42% [38]; LeNet-5, AlexNet and GoogleNet along with contrast stretching and histogram
equalization pre-processing techniques have achieved an accuracy of 98.17% [39].

Neurons have been classified in immunofluorescence images of rat brains, where CNN
showed better performance than Principal Component Analysis (PCA) with a Support
Vector Machine. However, this research explains that their model may not be suitable for
the hippocampus region given its dense neuronal population [40]. ResNet-101 architecture
has been used to classify immunofluorescence images of kidney biopsies with an accuracy
of 79% [41]. Myelin detection for classification of immunofluorescence images has also
been performed, testing 23 Machine Learning (ML) algorithms with the highest accuracy
encountered for Custom CNN and Boosted Trees methods with 98.84% and 98.46%, re-
spectively [42]. However, although different studies focus on immunofluorescence images,
none of them address the study of tauopathies from IPMB images.

The only related work found on classification of immunofluorescence post-mortem
brain imaging is presented by Alegro et al. [43], who propose a method for automated cell
counting based on segmentation followed by classification of cells using dictionary learning
and sparse coding. The authors explain that they did not use DL models because they
needed to train with small sample sets. The accuracy of the classification was expressed in
terms of recall and precision, which are 71% and 25%, respectively. However, despite being
performed on the same image domain, this research is not comparable to ours because its
main objective was segmenting and counting, not classifying.

1.2. Neurodegenerative Disease Classification Using Machine and Deep Learning

Lin et al. [44] classified different spectrums of neurodegenerative diseases using plasma
biomarker levels. The authors perform dimensionality reduction and then test seven different
ML models, with Random Forest being the best model with an accuracy of 86%. Tang et al. [29]
classified amyloid-beta pathologies by immunohistochemistry in human brain tissue. The
authors use a customized CNN for the classification of three types of beta-Amyloid plaques.
This paper also performs an interpretability study of the DL model using Guided Grad-CAM
activation mapping and feature occlusion studies. This research obtained an overall accuracy of
97.3% based on this polypeptide, which, like Tau, are considered the main proteins involved in
the pathogenesis of Alzheimer’s disease.

Gao et al. [45] provide a DL method for classification of CT images into classes:
Alzheimer’s disease, lesion and normal aging. The architecture used is both a 2D and 3D
CNN and it yields an average accuracy of 87.6%. Alternatively, Rohini et al. [14] propose a
model of classification of Alzheimer’s disease, mild cognitive impairment (MCI), Pre-MCI
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and healthy controls based on neuron degeneration. The authors assemble a Machine
Learning model with SVM, K-nearest neighbors and Gaussian Naive Bayes classifier.
The yielded accuracy was 88.5%, whereas the features used for training the model were
thickness and volume of the brain on the images. Singh et al. [27] also used MRI images for
classification of Parkinson’s disease versus scans without evidence of dopaminergic deficit
and healthy controls. The authors use an SVM model that implies an accuracy of nearly
100%; however, the dataset tested comprised only 150 images; therefore, it is unsure if the
method works on larger datasets.

As the conclusion of the literary review, IPMB images have not been used for studies
of classification of NDs. While MRI and CT scan at a generalized level and are based on
morphological data of brain tissue, IPMB images are based on brain tissue but at a molecular
level, which is key to understanding the pathogenesis of NDs. Therefore, the design of
a classification model among the different tauopathies, with a focus on aberrant PTMs
suffered by the Tau polypeptide, constitutes the challenge of the present investigation.

In this study, we modeled the different biomarkers concerning pathological PTMs
in Tau polypeptide in the hippocampal and entorhinal cortex regions of the brain using
a DL and Transfer Learning pipeline that classifies AD and PSP tauopathies on IPMB
images, provided by the National Biobank of Dementias of the National Autonomous
University of Mexico (UNAM). From a broad range of DL architectures, we developed
the ResNet-IFT architecture, which is a ResNet-50-based architecture that proves to be
efficient for obtaining models for classifying IPMB images. The models developed in this
study test whether Transfer Learning or Transfer Learning and fine-tuning are helpful tools
to develop the pipeline. This pipeline is followed by Guided Grad-CAM and Occlusion
Analysis algorithms in order to obtain the actual differences in Tau polypeptide that lead
to the classification of each disease. To our knowledge, the present work is the first one
proposed to classify NDs from parameters computed by IPMB images.

2. Materials and Methods

The following section presents the specifications of the IPMB images used for the
project. We also introduce the datasets we constructed to carry out the experimentation.
Next, we present four distinct architectures and a comprehensive comparison of their
performances to obtain the best classifier. Within the section, we provide a brief explanation
concerning the ResNet models and Transfer Learning for DL. Finally, we present the
specifications and results from implementation of XAI algorithms, Guided Grad-CAM and
Occlusion Analysis, to interpret the most significant regions of the IPMB images for an
accurate classification of AD or PSP.

2.1. IPMB Images

The IPMB images used for the research were obtained in a collaborative project be-
tween the National Dementia Biobank of the UNAM and the Bioengineering Department of
the Tecnologico de Monterrey. The images were obtained entirely from post-mortem tissues
of patients with AD and PSP. All data were obtained following current laws, regulations
and guidelines, such as sharing anonymized data that does not contain information that
would establish the identity of individual deceased subjects.

Delving deeper into the specifications of the brains used to obtain the IPMB images:

• Four different brains were used.
• The brain areas used were Hippocampus CA1 and Entorhinal cortex.
• Two brains with diagnosed AD were used—one of a 90 year old female and another

of an 81 year old male.
• Two male brains with diagnosed PSP were used—one of a 75 year old and another

one of a 85 year old.
• The tissues of patients with AD used were of the Braak 5–6 stages.

The IPMB images are a visual representation of the interaction of fluorochrome-
coupled antibodies with their epitopes on the specific protein chemical structure. The
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images also represent molecules with chemical interactions of fibrillar forms such as NFT
in the brain of patients. Experiments with three different biomarkers were used, resulting
in four-channel imaging:

• Green channel: Inmunodetection with AT8 mouse IgG antibody (MN1020, Invitro-
gene) against Tau protein. AT8 antibody detects phosphorylations of Tau protein in
amino acids: Serine 202 and Threonine 305. The presence of phosphates translates
into chemical changes that give protein Tau aberrant behaviour.

• Red channel: Inmunodetection with Thiazine red, which is a molecule that binds to
fibrillar insoluble structures of protein polymers. This molecule specifically binds to
protein Tau in its polymer conformation.

• Blue channel: Inmunodetection with pS396 rabbit IgG antibody against Tau pro-
tein [46]. The 396 antibody locates a phosphorylation in Serine 396 amino acid, which
is known as a chemical change in protein Tau that associates with the formation
of NFT.

• Merge channel: Visualization of the green, red and blue channel images together into
one image.

Images were obtained using a 100× oil-immersion plan Apochromat objective (NA 1.4).
Ten to fifteen consecutive single sections were sequentially scanned at 0.8–1.0 µm intervals
for two or three channels throughout the z-axis of the sample.

It is important to note that our images are captured with the same criteria and we
block the nonspecific background signal when incubating the corresponding antibodies in
the immunofluorescence. Moreover, it is important to highlight that the obtention of our
dataset has been a work that has taken over ten years.

For the development of the project, a pre-processing stage was not needed, the images
were processed as they were delivered by the experts, already labeled.

2.2. Datasets

Three datasets were formed to evaluate the performance through experimentation, as
shown in Table 1. The class balance maintained a ratio of 54–46%, on average. The main
purpose of the image distribution among the datasets was to obtain insights of pathologies
of PSP and AD according to the brain area: hippocampus or entorhinal cortex. At the
same time, we had the purpose of evaluating the classification models and their ability to
generate determinations regardless of having a division per brain area. In Figure 1, we can
observe a random sample of images according to the datasets in Table 1.

Table 1. Summary of datasets.

Dataset Label Brain Regions Included Classes Number of Images per Class Total Images

D1 Hippocampus
Alzheimer 346

656
PSP 310

D2 Entorhinal cortex
Alzheimer 393

702
PSP 309

D3 Hippocampus and Entorhinal cortex
Alzheimer 739

1358
PSP 619

2.3. Model Development and Training

In order to explain our main contribution, i.e. the classifier and the model’s inter-
pretability merit from XAI algorithms, we briefly address first the theory behind our choices
of architectures to test.

It is commonly understood that DL models work best when copious amounts of
annotated data are available; however, for our research, even our largest dataset (D3) is
relatively small (over 1300 images). Therefore, in order to achieve optimal performance,
we considered a wide range of CNN architectures, starting with a multilayer perceptron
and then increasing the model complexity, up to a pre-trained ResNet50 architecture using
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Transfer Learning and fine-tuning. In the related work, previously presented, artificial
neural networks and Deep Learning models have been used for the classification of im-
munofluorescence images and the classification of neurodegenerative diseases. Therefore,
we decided to test two artificial neural networks with different depths and two Deep
Learning architectures with different complexity.

Given the limitations of our datasets, we decided to use Transfer Learning, thus
initializing the weights from an ImageNet pre-trained model, rather than randomly, since
this would help extracting features from the IPMB images dataset. Moreover, Transfer
Learning has been proven to save time and achieve a better performance than training an
entire model from scratch [47]. Moreover, Transfer Learning improves the learning skills in
the target task given the knowledge from the source task [48].

Figure 1. Representative images organized by class and by dataset. (a) Images from D1 and D3
corresponding to Alzheimer’s disease (AD). (b) Images from D1 and D3 corresponding to Progressive
Supranuclear Palsy (PSP). (c) Images from D2 and D3 corresponding to AD. (d) Images from D2 and
D3 corresponding to PSP. From left to right, we can see the IPMB images with the respective green,
blue, red and merge channels for different Tau polypeptide biomarkers in both tauopathies.

2.3.1. ResNet Models

Since the introduction of ResNet models by He et al. [49], ResNet-based architectures
have shown good convergence behaviors [50], particularly in medical imaging classifi-
cation [51] as well as in immunofluorescence imaging [38,39], where these models have
obtained high accuracies. ResNet models are based on the idea of having convolution
blocks and identity blocks joined by shortcuts in order to avoid the vanishing gradient
problem [49]. Each convolution block and identity block is composed by repetitions of con-
volution, batch normalization and activation. ResNet-50 contains convolution and identity
blocks that together form 49 convolutional layers with a fully connected layer at the end of
the network. ResNet-50 was chosen among the broad options of pre-trained architectures
because, given their residual mapping and shortcut connections, it consistently leads to
better results compared to very deep plain networks both in accuracies and in training
times [49].
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2.3.2. Transfer Learning

As we briefly explained in the Introduction, Transfer Learning uses a model trained
on a source domain for a specified task and then re-uses that model for a different task [52].
It is important to highlight that there are different Transfer Learning categories:

• Homogeneous Transfer Learning: Source and target feature spaces are the same.
• Heterogeneous Transfer Learning: Source and target feature spaces are different.

For the development of this project, we define two levels of Transfer Learning:

• Transfer Learning: Initializing the weights of the model using a pre-trained archi-
tecture on the ImageNet dataset. Then, we preload these weights to train the entire
architecture with our developed dataset.

• Transfer Learning and fine-tuning: Initializing the weights of the model using a pre-
trained architecture on ImageNet dataset, but training only the last convolution block
and the final fully connected layer with our developed dataset, for some epochs.
Afterwards, we unfreeze the entire architecture and continue to train the model for
additional epochs.

From the explanations above, it should be noted that we follow a heterogeneous
Transfer Learning approach, since we will use ImageNet pre-trained architectures for the
classification of IPMB images. In addition, we tested both Transfer Learning and Transfer
Learning plus fine-tuning.

2.3.3. Classifier Development and Testing

To accomplish the goal of developing the most suitable model for IPMB images
classification, we developed four different DL architectures:

• Sequential CNN: A Multi-Layer Perceptron with three fully connected linear layers
with 18, 8 and 2 neurons. L2 regularization was used for the last linear layer. The
training was performed for 30 epochs.

• Simple CNN: A CNN with 3 convolution layers, starting with 16 filters, then 32 and
lastly 64 filters of 3 × 3 kernels. Each convolution was followed up by a max pooling
operation with a 2 × 2 window. Then, we reduced the images to a one-dimensional
vector and used two fully connected layers with 200 and 2 neurons, respectively. We
applied a dropout layer with a rate of 0.5 between these two fully connected layers.
Each convolution and linear operation was performed with L2 regularization. The
model was trained for 30 epochs.

• ResNet-IFTF: The architecture ResNet-50, as provided in Keras, was used. This
architecture is pre-trained on the ImageNet dataset. Transfer Learning and fine-tuning
were applied for the development of this model. We froze the entire model up to
the last activation layer encountered and added a convolution layer with 512 filters
with kernels of size 1 × 1, a batch normalization layer, an activation layer, a global
average pooling layer and an output layer with 2 neurons and L2 regularization. The
model was trained for 15 epochs with the frozen part of the architecture and then for
10 additional epochs unfreezing the entire model.

• ResNet-IFT: The architecture ResNet-50 from Keras was used. This architecture was
pre-trained on the ImageNet dataset. For this model, we used Transfer Learning using
the entire pre-trained RESNET without any further fine-tuning. The entire architecture
was trained for 15 epochs. We added a global average pooling layer and an output
layer with L2 regularization. In comparison to the original ResNet-50 architecture,
we eliminated the flattening layer between the global average pooling layer and the
dense layer.

All neural network models were developed and trained in the open source package
Keras of Tensorflow. The threshold used for classification in all neural networks was 0.5.
In Table 2 we can see the summary of the specifications of the layers of each of the four
architectures that we previously described. In Figures 2 and 3, we present a visual repre-
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sentation of the architectures. As we can see in Figure 3, for the ResNet-IFTF architecture,
we were required to add an additional convolutional block (convolutional layer + batch
normalization layer + activation layer) in comparison to the original ResNet-IFT architec-
ture. The additional convolutional block was required to perform the interpretability study,
in terms of coding.

Figure 2. Simplest architecture designs used in this study. (a) Sequential CNN architecture. (b) Sim-
ple CNN architecture (Diagrams of the architectures were developed using Net2Vis [53] tool for
visualizing Deep Learning models).

Figure 3. ResNet-50-based architecture designs used in this study. (a) Base model of ResNet-50 from
Keras until the last activation layer of the last convolution. (b) Layers added at the end of the base
model for development of ResNet-IFT. (c) Layers added at the end of the base model for development
of ResNet-IFTF. (Diagrams of the architectures were developed using Net2Vis tool for visualizing
Deep Learning models).
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Table 2. Summary of CNN Architectures tested.

Architecture Label Structure Pretrained Transfer/Fine Tuning

ResNet-IFT

48-convolution layers

Yes, ImageNet Transfer1 Global Average Pooling

1 Dense Layer

ResNet-IFTF

49-convolution layers

Yes, ImageNet Transfer and Fine Tuning1 Global Average Pooling

1 Dense Layer

Simple CNN
3 blocks of convolution layer and max pooling

No No
2 Dense Layer

Sequential CNN 3 Dense layers No No

2.4. Interpretation by XAI Algorithms

The XAI algorithms chosen to aid in the interpretation of our models are Guided
Grad-CAM and Occlusion Analysis, which allow us to test both a back-propagation-based
method and a perturbation-based method [27].

2.4.1. Guided Grad-CAM

In order to provide additional interpretations of the results, we look into the CNN’s
internal logic using the Guided Grad-CAM algorithm [54]. This visualization technique
is a combination of Grad-CAM and guided back-propagation, obtaining as a result a
technique that is class-discriminative, localizes relevant image regions and highlights fine-
grained pixels that contribute to the classification of an image. Guided Grad-CAM uses
the gradient information flowing into the last convolution layer of the CNN with the aim
of understanding the importance of each neuron for a decision of interest. In Figure 4,
we provide an explanatory diagram of this technique. We employed an open-source
implementation of Guided Grad-CAM by Khandelwal [55].

Figure 4. Guided Grad-CAM study diagram. This process has three stages. Stage one: Grad-CAM
computation. The input image enters the classifier previously trained and it is forward-propagated
until the last convolution layer. Here, we computed the gradients of the scoring class for the activations
of the feature maps of the last convolution layer. Then, the gradients flowing back are global-average-
pooled to obtain a weight of each feature map for a target class. Each activation map is multiplied
by its corresponding weight and we obtain the average. Finally, we apply ReLU on the resulting
visualization to keep only positive influence on the output map. Stage two: guided back-propagation
computation. The input image enters the classifier previously trained and it is forward-propagated
until the last convolution layer. A current intermediate result of back-propagation is multiplied by
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the derivative of ReLU with respect to the earlier feature map, which is also multiplied by the
derivative of ReLU with respect to the current intermediate result of back-propagation. Stage three:
Guided Grad-CAM computation. The output of Grad-CAM and guided back-propagation are
element-wise multiplied and we obtain the Guided Grad-CAM visualization.

2.4.2. Occlusion Analysis

This technique passes a fixed-size patch across the image, evaluating the class predic-
tion for each patch location in the picture [56]. Figure 5 presents an explanatory diagram of
this process. The purpose of this process is to determine image areas that, when covered by
a patch, considerably affect the predicted class. For this study, we used the Python library
tf-explain [57] and defined a squared patch of 20 pixels.

Figure 5. Occlusion sensitivity study diagram. The input image enters the previously trained
classifier; then, a patch is placed covering a certain part of the figure and a prediction score is made.
The process of placing a patch in another region of the image and generating a score continues
until the patch has been placed throughout the image. Regions where the prediction score changed
considerably are highlighted with a yellow gleam.

2.5. Evaluation Metrics

For the evaluation of the classification models, we used the metric accuracy (number
of correct predictions/total predictions) as our guide to define a successful model. This
metric was chosen because our datasets are balanced. We used 10-fold cross validation to
determine the standard deviation of the models developed per architecture. Each dataset
was split into 80% for training and validation and 20% for evaluation or testing.

The Guided Grad-CAM and the Occlusion experiments were evaluated by confir-
mation by human experts. For the XAI experiments, we were interested in obtaining an
interpretation and insights on the importance of a certain prediction.

3. Results

The following section describes the accuracy metrics obtained for the models de-
veloped with the four CNN architectures previously described. Moreover, this section
stresses the best classification model comparing the probability scores for a determined
class. Finally, we present the findings for the interpretability study.

3.1. Classification Models per Dataset

As explained in the previous section, we developed four architectures and tested
their accuracy to obtain the most suitable model for IPMB image classification. For each
dataset (D1, D2 and D3), we tested each of the four architectures, thus developing a total
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of 12 models. In Table 3 and Figure 6, we can see that the architecture ResNet-IFT obtains
the highest accuracy for the models developed using D2 and D3; however, ResNet-IFTF
obtains the best accuracy for the model developed with D1. The Sequential and Simple
architectures do not reach an accuracy greater than 56.41% and 53.42%, respectively. We
can also observe the largest standard deviation from the Simple architecture, whilst the
smallest one is obtained from the ResNet-IFT.

Table 3. Performance evaluation of CNN architectures.

Architecture Label Dataset Accuracy

ResNet-IFT

D1 97.55 ± 2.63

D2 99.29 ± 1.00

D3 98.38 ± 1.58

ResNet-IFTF

D1 98.18 ± 2.12

D2 98.57 ± 1.17

D3 97.20 ± 2.83

Simple CNN

D1 52.00 ± 6.71

D2 53.42 ± 6.14

D3 51.11 ± 4.35

Sequential CNN

D1 52.60 ± 1.76

D2 56.41 ± 1.07

D3 52.36 ± 3.17

Figure 6. Accuracy performance per architecture. The ResNet-IFT and ResNet-IFTF architectures
reach an accuracy between 97.2% and 99.29%; however, ResNet-IFT gives the best performance for 2
of the 3 datasets developed for this study.

Since the accuracies obtained for the models using Sequential and Simple architectures
are the lowest, but the accuracy of the models using ResNet-IFT and ResNet-IFTF are
similar, we were able to visualize the effect of applying a level of Transfer Learning on a
classification task for IPMB images. We decided to explore further the statistical meaning
of the results of the models developed with the ResNet architectures. As we can see in
Figure 6, the models with ResNet-IFT and ResNet-IFTF have similar performance; however,
in Figure 7, we can see that with ResNet-IFTF, the models have dispersed results in 10-fold
cross validation, whereas with ResNet-IFT (even for D1) smaller data dispersion is achieved.
Moreover, the accuracy of the model with D1 in ResNet-IFT is affected by the presence of
outliers; nonetheless, its accuracy median is 98.47%.
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Figure 7. Accuracy analysis for ResNet-IFT and ResNet-IFTF. The quartile calculation used exclusive
median; the x symbol shows the mean values.

3.2. Rigor of the Classification

As a final experiment to determine the best performing model between ResNet-IFT
and ResNet-IFTF, we tested a random sample of images in order to obtain the prediction
value per class, as shown in Figure 8; while with ResNet-IFT, we achieve prediction
scores above 99% for each image, with ResNet-IFTF the model results fluctuate between
97 and 99%. Therefore, we selected the models obtained with ResNet-IFT to carry out
interpretability analyses.

Figure 8. Sample of images for prediction analysis with ResNet-IFT and ResNet-IFTF. (a) Models
developed using D1. (b) Models developed using D2. (c) Models developed using D3.

Furthermore, in Figure 9, we can see that the ResNet-IFT architecture misclassified
only three images from D1 and D2, with only three D1 misclassified fusion channel images.
In D2, ResNet-IFT incorrectly classified one green channel image, one red channel image
and one fusion channel image. It is important to note that ResNet-IFT trained on D3 did
not misclassify any images.
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Figure 9. Unique misclassified images using ResNet-IFT architecture. (a) Model developed using D1.
(b) Model developed using D2.

3.3. Interpretability Study

The DL pipeline obtained from ResNet-IFT was saved and then loaded for the Guided
Grad-CAM and Occlusion Analysis algorithms to obtain the final visualizations.

Firstly, we obtained the visualizations of the activations of the entire models of ResNet-
IFT trained on D1, D2 and D3. As we can see in Figure 10, the earlier layers of each model
are mainly activated by either the colored part of the image or the entire background of the
image. As we go deeper in the model, we can see that, even though the colored portion
of the images is always a significant factor to be classified as AD or PSP, there are also
portions of the background that are activated. However, it is interesting to note that some
portions of the activated background show non-immunoreactive zones that are not even
colored in the original image. These activations were obtained using the Keract [58] open
source library.

We are able to see spots of non-immunoreactivity that are not colored in the original
image thanks to the filters learned by the models. The convolution operation in CNN is
an element-wise multiplication followed by a sum, between an input datum and a filter
that gives us an output feature map. The convolutional layers execute the convolution
operation with the filters learned by the models, in order to perform feature extraction.
As the depth of the CNN increases, the complexity of the features learned by the CNN
increases. Therefore, even though we are not able to appreciate completely some spots of
non-immunoreactivity in the original image, these are reflected as a set of broad features
that the models are able to abstract from the original image.

From our experimentation, we could identify features of Tau protein that differen-
tially associate between the hippocampal region and the entorhinal cortex of the brain.
Although the results coincide with the studied areas of tangles by neurophysiologists, it is
noteworthy that our CNN pipeline also located other discriminative criteria outside the
zones of elongation of the polymeric filaments of the Tau protein or outside the body of the
neurofibrillary tangle.

In Figure 11, we can see that the features highlighted for Guided Grad-CAM are
consistent with immunoreactivity in NFT structures. For example, for AD prediction
(Figure 11a–c), we can see that the colored pixels are crucial for the prediction. However, it
is interesting to note that, although the same quadrant structure presents immunoreactivity
with AT8 antibody, 396 antibody or Thiazine red, the fine-grained details that Guided
Grad-CAM highlights are different from those highlighted by the immunoreactivity. For
the green channel, the stained tangles in the periphery seem to be significant, whereas for
the red channel the tangle with circular morphology in the center seems to be decisive for
classifying the image as AD.
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Figure 10. Activations throughout the model ResNet-IFT testing. (a) Activations of a PSP image
using ResNet-IFT with D2. (b) Activations of an AD image using ResNet-IFT with D1. (c) Activations
of an AD image using ResNet-IFT with D3. From the fifth row of (a–c) we can see that features that
are not visible in the original image start to be taken into account for the activation of the models.

Regarding the blue channel, which correspond to pS396, it shows a relationship
between the immunoreactive tangles in the periphery and the one located in the medial
zone with round morphology. However, the criteria obtained with the model developed for
D3 are not as enriching because they seem to point more to the immunoreactive structures
in the periphery rather than to the central tangle. We find this result very interesting
because of the implications of the phosphorylation of serine 396 of the Tau protein as an
event considered closely associated in the final stages of NFT formation.

From Figure 11a–c, i.e., the Occlusion Analysis study, we can confirm that the model
trained only on D1 images locates more significant regions that contribute to the classi-
fication of tauopathies. However, the Occlusion Analyses for D1 and D3 coincide with
the Guided Grad-CAM in establishing that the pS396 biomarker in the blue channel is
associated to the periphery and center of the image with significant criteria, the red channel
for the insoluble fibrillar forms has less peripheral presence of the image and the green
channel associates less towards the periphery. Moreover, we can see that the model trained
on D1 is less selective for the relevant structures of the image because in D3 we also have
images of the entorhinal cortex and not just the hippocampus.
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Figure 11. Model interpretability studies using XAI techniques for PSP and AD classification in the
hippocampus region of patients with tauopathies. (a) Guided Grad-CAM analysis (second and fourth
column) for AD classification of green channel highlights NFT in the southern (for D1) and western (for D3)
periphery of the image. Occlusion Analysis (third and fifth column) highlight the southern and northern
periphery (for D1) and only the southern periphery (for D3) of the image. (b) Guided Grad-CAM analysis
(second and fourth column) for AD classification of red channel highlights neurofibrillary tangle at the
center (for D1) and periphery (for D3) of the image. Occlusion Analysis (third and fifth column) highlights
the southern and northern periphery as well as the center (for D1) and only the center of the image (for D3).
(c) Guided Grad-CAM analysis (second and fourth column) for AD classification of blue channel highlights
neurofibrillary tangle at the center and southern periphery (for D1) and periphery (for D3). Occlusion
Analysis (third and fifth column) highlight the southern and northern periphery as well as the center (for
D1) and only the center and southern periphery (for D3). (d–f) Guided Grad-CAM analysis (second and
fourth column) for PSP classification highlights mainly over all the originally colored middle portion of
the image (for D1 and D3). Occlusion Analysis (third and fifth column) highlights the center of the image
(for D1 and D3). In the green channel (a,d) immunoreactivity of the AT8 antibody directed against the
biomarker for dual phosphorylation at serine 202 and threonine 305 of the Tau polypeptide is observed
(a,d). The red channel (b,e) shows staining with Thiazine red dye for fibrillar forms of pathological Tau
aggregates. The blue channel (c,f) shows immunoreactivity of the pS396 antibody directed against the
biomarker for phosphorylation at amino acid serine 396 of Tau protein.

For PSP classification in the hippocampus, we can observe that there is a correlation in the
relevant part of the image that does not fully agree with the immunoreactivity detected with the
corresponding antibody (Figure 11d–f) because there are areas other than immunoreactivity that
ResNet-IFT considers relevant and that may represent a differentiating factor from the point of
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view of pathogenesis. It is important to highlight that for both models developed for D1 and
D3, the Occlusion Analysis and the Guided Grad-CAM visualizations give similar results.

In Figure 12, we can see that for the images of the entorhinal cortex, the most prominent
visualized tangle always contributes to the prediction of either AD or PSP. However, other areas
of fibrillar growth similar to the neuropil are always relevant to the biomarker in the green
channel, as we can see in Figure 12a,d (second and fourth column). The results of the Occlusion
Analysis are very similar despite the dataset used to train the model. These results highlight
structures not localized to the NFT growth body.

Figure 12. Model interpretability studies using XAI techniques for PSP and AD classification in the
entorhinal cortex region of patients with tauopathies. (a–c) Guided Grad-CAM analysis (second and
fourth column) for AD classification highlights the most prominent NFT of the image; however, for
D2 mostly the entire NFT is spotted and for D3 the southwest region of the tangle is spotted. The
Occlusion Analysis (third and fifth column) highlights the northern and center region (for D2 and D3)
of the image. (d–f) Guided Grad-CAM analysis (second and fourth column) for PSP classification
mainly highlights all the originally most prominent immunoreactive middle portion of the image (for
D2 and D3). Occlusion Analysis (third and fifth column) highlights the center of the image near the
apex of the central NFT (for D2 and D3). In the green channel (a,d), immunoreactivity of the AT8
antibody directed against the biomarker for dual phosphorylation at serine 202 and threonine 305 of
the Tau polypeptide is observed (a,d). The red channel (b,e) shows staining with Thiazine red dye
for fibrillar forms of pathological Tau aggregates. The blue channel (c,f) shows immunoreactivity of
the pS396 antibody directed against the biomarker for phosphorylation at amino acid serine 396 of
Tau protein.
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4. Discussion

From our comprehensive experimentation, we can see that the Transfer Learning
model displays the best prediction performance. Thus, this is the model we used to
implement interpretability models to analyze and identify AD and PSP tauopathies from
IPMB images. In addition, Guided Grad-CAM and Occlusion Analysis help us to obtain
information about the molecular pathogenesis of the tauopathies that was not recognized
in a conventional interpretation.

4.1. Transfer Learning Model versus Fine-Tuning Model

From our initial experimentation, we can see that the Sequential and Simple CNN
architectures do not generalize properly or abstract enough information to learn the features
of the IPMB images dataset. We decided to start with a three-layer MLP since we were
dealing with medical images from which we did not know the complexity for classification.
As we can see, the spatial information is lost in this model and therefore it is not a good fit
for the IPMB images. However, it is interesting that the Simple CNN-based models behaved
slightly worse, as shown in our standard deviation analyses we carried out. However, in
this case the Simple CNN-based models were affected by the random weight initialization
instead of using pre-trained weights.

In the case of the models developed using Transfer Learning and Transfer Learning
plus fine-tuning, the Transfer Learning model using pre-trained weights of the ImageNet
dataset achieved the best results. According to Guo et al. [59], it is not clear if fine-tuning
to the last contiguous layer is de facto the best option in all applications. The reason is
that ResNets can be considered not as a large deep network, but rather as sets of shallow
networks [60]. Therefore, freezing a part of the architecture means that the ensemble effect
diminishes the assumption that early or middle layers should be shared with common
low-level or mid-level features. Moreover, Pan et al. [47] explain that the phenomenon of
“negative transfer” occurs when the source domain of the model, in this case the ImageNet
dataset, does not match the target domain, in this case the IPMB images. Moreover,
Peng et al. [61] obtain as insight that fine-tuning with a smaller dataset gives a better result
than with a larger dataset. The authors also explain that with a larger dataset training
the entire model has a better output than fine-tuning. This can give us an insight into
the minimum amount of images for the Transfer Learning without fine-tuning to be more
effective than fine-tuning it.

As we can see in Figure 7, the models for the hippocampus obtained the most signifi-
cant accuracy median with fine-tuning; however, with only Transfer Learning, it had the
presence of some outliers. Moreover, for the entorhinal cortex, the improvement using only
Transfer Learning is noticeable; therefore, the minimum number of images required to favor
our Transfer Learning model oscillates between 656 and 702 images, approximately. This is
supported taking into account that for D1 (656 images) Transfer Learning with fine-tuning
was a better strategy than only Transfer Learning, unlike D1 with 702 images and D3 with
1358 images.

4.2. Guided Grad-CAM and Occlusion Analysis Insights AD and PSP Classification

CNNs have been poorly considered in the histopathological study of neurodegener-
ative diseases and to a lesser extent focused on the training of algorithms at the level of
fibrillar lesions such as NFTs. Our study points out that Transfer Learning demonstrates
strong predictive performance. Therefore, the models developed with ResNet-IFT can im-
plement a criterion of interpretability aided by Guided Grad-CAM and Occlusion Analysis
to study and identify structural differences with IPMB images of AD and PSP.

The use of Guided Grad-CAM and Occlusion Analysis showed that the presence of
the main tangle in the images, except in the hippocampal region with AD immunoreactive
to AT8 antibody, is relevant for classifying it as AD or PSP. The main difference for the
classification of these tauopathies in the hippocampal region is that the most relevant
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structural features of PSP are located in the center of the quadrant despite the biomarker
and for AD they are located in the center and periphery of the image.

In the entorhinal cortex, the criteria focus mainly on the most prominent NFT for
classification of AD or PSP despite its location in the image. These results represent a
novel way to explore and understand the phenomenon of neurodegenerative diseases from
immunostaining with specific biomarkers, since they show relevant information that is not
salient in the original images, in contrast to the status quo in related research that focuses
on the most complex NFT structures evidenced by immunoreactivity [62–64].

Hence, we provide additional criteria for the identification of AD that shows that there
is relevant information on the periphery of the image. In addition, we note that whenever
we have images of both the entorhinal cortex and the hippocampus for AD classification,
peripheral structures in the image are relevant.

Tang et al. [29] explain that a limitation with the Guided Grad-CAM algorithm is
that it may highlight features of the image that indicate that something is not present for
the classification. However, here we are not classifying objects within the image, we are
classifying NDs using the most relevant features of an image. If the highlighted portion of
the image means the absence of something in comparison to the other class, it still means
that it is an important area to look at while researching the pathogenesis of NDs. Moreover,
in order to make the research more robust, as a future work we can classify neuron areas or
lession traits for each ND to test the reliability of the ResNet-IFT model.

The heat zones assigned by Occlusion Analysis indicate a stronger association with
both pS396 antibody immunoreactive areas and TR-positive staining than with AT8 anti-
body immunoreactivity (Figure 11a–c) in the NFTs in the process of maturing to fibrillar
forms (by their circular morphology) located in the hippocampal area of AD patients. This
result is in agreement with other studies regarding the aggregation process of the Tau
polypeptide, which indicates late phosphorylation at amino acid serine 396 as one of the
most advanced events for its polymerization and maturation into insoluble fibrillar forms
that have affinity for the Thiazine red molecule [18,65,66].

It is likely that earlier events in pathological processing toward the amino-terminal end
of the Tau polypeptide, such as phosphorylation at amino acid serine 202 and threonine 305,
show less association than later events toward the carboxyl-terminal end [67]. According
to the hot spots assigned by the Occlusion Analysis, even the algorithm discovers other
localized areas outside the NFTs, evidenced by immunoreactivity with the AT8 antibody.
We consider these data very relevant because they show that other areas independent
of immunoreactivity with antibodies directed towards the amino-terminal end may be
compromised or associated with the early stages of pathological processing of the Tau
protein in the hippocampus of AD patients.

Importantly, we did not observe the same behavior in hippocampal NFTs in PSP
patients (Figure 11d–f). For both D1 and D3 training, heat zones are associated with the
area that is immunoreactive with AT8 biomarkers, pS396 and Thiazine red dye staining.
These data suggest differential processing in Tau polypeptide pathogenesis between PSP
and AD tauopathies in their early stages if we analyze hippocampal NFT populations.

In summary, this evidence underlines the importance of the analysis by the occlusion
algorithm for our further studies using early and late biomarkers in the pathological
processing of Tau protein directed towards its amino-terminal and carboxyl-terminal end,
respectively, which can be validated among different neurodegenerative diseases that have
the common factor of pathological PTMs of the Tau polypeptide [68].

Regarding the Occlusion Analysis in the NFTs of the entorhinal cortex of patients with
AD and PSP (Figure 12), using the same Tau biomarker scheme between both tauopathies,
the heat map only points out areas within the regions that are immunoreactive with AT8
antibodies, pS396 and Thiazine red molecule staining with D2.

However, the results obtained with the algorithm trained with D2 are more associated
with mature NFTs than those trained with D3, which could suggest that there are molecular
differences between initiating and advanced events for these fibrillar structures. Another in-
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teresting result with Occlusion Analysis with D3 denotes areas outside the immunoreactive
zones in AD (Figure 11a–c) and not in PSP (Figure 11d–f) in the analysis with D3, which
confirms possible molecular differences in Tau processing between both proteinopathies in
populations of NFTs in the entorhinal cortex.

Still, the common areas found with Occlusion Analysis and Guided Grad-CAM are
considered decisive for the classification of PSP and AD. This means that experts could focus
their attention more specially on some areas of the image which could save research time.
Importantly, clinical profile and histopathological analysis were key factors in selecting
patients from our study; however, we have as a perspective to include an analysis of
ML/DL algorithms trained with specific markers for PSP and EA, different from Tau
biomarkers, in order to compare other variables in prediction methods.

5. Conclusions

In this work, we obtained a CNN pipeline using ResNet-IFT architecture and XAI
algorithms Guided Grad-CAM and Occlusion Analysis where the classification of AD and
PSP in IPMB images achieved an accuracy of 98.41%, on average, using Transfer Learning.
We conclude that in cases in which we want to use Transfer Learning and fine-tuning with a
ResNet-50-based model, we may need to initialize weights from a similar domain. However,
using Transfer Learning with a ResNet-50-based model pre-trained on the ImageNet dataset
results in very effective models for classification of AD and PSP in IPMB images.

Our study shows that there may be different structural patterns in the immunoreactiv-
ity of the Tau protein in NFTs present in the brains of patients with PSP and AD, as identified
with our models. Moreover, our work suggests that DL classification algorithms based
on ResNet 50 can support the structural analysis of Tau polypeptide aggregation, which
has been studied primarily with histopathological assays for decades. Based on antibody
training that has been documented in the advanced stages of pathological Tau processing,
the analysis of Guided Grad-CAM and Occlusion Analysis proposes immunoreactive ar-
eas of the neurofibrillary tangle and other areas of the quadrant that may be important
for studying the aggregation behavior of this protein in AD and PSP. This methodology
proposes that to study these diseases, criteria of shared spatial invariability can also be
considered between the images that support the CNN models for the IPMB images. While
structural patterns are identified in this study, further research is needed to identify the
exact nature of this difference.

This first study allows us to suggest that classifier models based on ResNet-50 architec-
tures are valuable for the classification of AD and PSP IPMB images. Finally, these tools will
help us to structure the following analyses using close-ups of images to classify AD and
PSP using fluorescence images with antibodies against other PTMs that are associated with
the formation of Tau filaments, such as conformational changes or endogenous proteolysis.
Likewise, we propose to build a multiclass classifier where we carry out the study of
structural characteristics comparing PTMs against non-fibrillar Tau controls. Moreover, we
are considering whether, in our future work, to combine classification with object detection
in order to classify neurodegenerative diseases and also to detect pre-defined features
of interest.
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