Universidad Nacional Pedro Henríquez Ureña
(UNPHU)

Facultad de Ciencias y Tecnología

Escuela de Ingeniería Civil

“Propuesta De Vivienda De Bajo Costo.
Casos: Vivienda En Muros De Botellas De Plásticos”

Trabajo de grado para optar por el título de Ingeniero Civil

Sustentado por:

Katherine Desirée Pichardo Ramírez 11-0591

Johanna Ramona Valdez Rodríguez 11-1226

Asesor:

Ing. César Torres

Santo Domingo D.N

2017
AGRADECIMIENTOS.

A DIOS, Por hacer posible cumplir de este sueño.

A mis padres, Arturo Pichard y Desirée Ramírez. Por estar ahí siempre apoyándome y dándome su ayuda para culminar esta fase de mi vida.

A Juan Tamayo, Por estar aquí siempre a mi lado en el inicio y culminación de etapa.

A mis amigos. Indiana Del Pozo, Esmi Rodríguez, Ediniery Pichardo, Maritza Abreu, María Richardson, Anny German, Anny Hernández, Sharlyn Orosco, Stephania Ramos.

A mis amigos. Ronnie Santana, Kelvin Baldwin, Erick Doñe.

Y a mi compañera de tesis. Johanna Valdez por ser una gran compañera de tesis y mi amiga.

En memoria a mi abuelo. Rafael Ramírez.

Katherine Pichardo
AGRADECIMIENTOS.

A Dios: Por ser mi guía y sostén ante todas las adversidades.

A mis padres: José A. Valdez y Ana Virginia Rodríguez por apoyarme y estimularme ante este trayecto.

A mis hermanos: Rosa Ana, José Paris, Ariel y Alejandra gracias por ser fuente de agua viva para contra restar las dificultades.

A nuestro asesor y amigo el Ingeniero César Torres: Por gran apoyo y buenos consejos para culminar con éxito esta tesis.

A mis amigos que de una forma u otra han aportado su granito de arena para cerrar este capítulo, uno de los tantos que van a iniciar. Manuel Rivera, Rainer Martínez, Bryan de la Rosa, Antonia Alcántara, Kenia López, Julia Medina, Francisco García, Stephanie Ramos, Daniela mañón; a ustedes las gracias, mis ángeles sin alas, por siempre en mi corazón.

A mis Familiares: Por haber desarrollado en mí un gran espíritu para culminar con esta meta.

A mi compañera de tesis: Katherine Pichardo por su dedicación y estar siempre dispuesta a trabajar (Aunque a veces la quiera picar) siempre en mi corazón.

Johanna Valdez
2.8.3 CLASIFICACIÓN .. 25
2.8.4 Separar para reciclar ... 28

III. CAPITULO: MARCO CONCEPTUAL ... 32

3.1 VARIABLES FUNDAMENTALES .. 32
3.1.1 CONCEPTOS CLAVES ... 32
3.1.2 ELEMENTOS DEL PROCESO CONSTRUCTIVOS DE MUROS PLASTICOS RECLAMADOS. 33
3.1.3 VENTAJAS Y DESVENTAJAS ... 34

• MÉTODO MURO DE PLÁSTICO .. 34

3.2 ANÁLISIS DE COSTOS .. 35
3.3 SISTEMA MUROS DE PLÁSTICOS RECLAMADOS ... 35

TABLA 5. ANÁLISIS DE UNA VIVIENDA DE 50m\(^2\) DE 25 CM DE ESPESOR EN MUROS CON UNA ALTURA DE 2.5M, DE CON BOTELLAS DE PLÁSTICOS REUTILIZADO .. 35

IV. CAPITULO: MARCO METODOLÓGICO .. 36

4.1 FORMULACIÓN DE HIPÓTESIS ... 36
4.2 ENFOQUE DE LA INVESTIGACIÓN .. 36
4.3 TIPOS DE INVESTIGACIÓN ... 36
4.4 PROCEDIMIENTO DE INVESTIGACIÓN ... 36
4.5 METODO DE INVESTIGACION .. 37

V. CAPITULO: RESULTADOS .. 38

5.1 CONCLUSIÓN .. 38
5.2 RECOMENDACIONES .. 40

BIBLIOGRAFIA ... 41

VI. ANEXOS .. 42
INDICE DE TABLAS.

TABLA 1...23

1.1 Porcentajes del volumen de los diferentes materiales para construcción.

TABLA 2...24

2.1 Contenido de residuo de los materiales.

TABLA 3...33

3.1 Elementos del proceso constructivo.

TABLA 4...34

4.1. Ventajas y desventajas del sistema muros de plásticos reciclados.

TABLA 5...35

5.1. Análisis de una vivienda de 50m2 de 25 cm de espesor en muros, con una altura de 2.5m.
RESUMEN

Comparación Ambiental entre el sistema de encofrado de formaletas frente al sistema de muros de botellas de plásticos reciclados.

Pese al avance de la tecnología aplicada al mundo de la construcción en los últimos años, los métodos utilizados en este sector siguen siendo los mismos; esta situación nos lleva a plantear la necesidad de cambiar la forma de construir cada proyecto admite multitud de procedimientos para llevarlo a término; la virtud del constructor está en elegir, de entre todos ellos el óptimo para realizarlo con el coste, el plazo y la calidad exigidos.

El presente trabajo de análisis tiene como finalidad conocer y tener claro el sistema que impactan en nuestra actualidad, donde se permite y se prevé sus ventajas, desventajas, la importancia de tener en cuenta a partir del modelo de construcción que se pretende proyectar, en cuanto a diseño arquitectónico, flexibilidad, manejabilidad, recursos económicos, materiales ecológicos y de mano de obra.

Con esta tesis se busca escudriñar en los siguientes ámbitos:

1. Optimizar el diseño del sistema constructivo.
2. Análisis de viabilidad y beneficios del sistema constructivo.
3. Describir las ventajas y desventajas de la utilización de muros plásticos reciclado.
4. Elaborar un diagrama de tiempos de construcción
5. Describir soluciones medioambientales del sistema constructivo.
6. El agua su uso y consumo para ayudar en el medio ambiente
INTRODUCCION.

A continuación, se le expondrá acerca del sistema de muro de botellas de plásticos reciclados, así como sus análisis en el uso ambiental, económico y social en ámbitos de construcción.

Con el objetivo principal de dar a conocer el uso, consumo y tratamiento de recursos como el agua para el sistema, asimismo como la seguridad laboral, la generación y manejo de los desechos en el ámbito de construcción.

Las casas modulares prefabricadas se constituyen en una alternativa para suplir el déficit actual de vivienda. En este tipo de construcciones se incorpora el uso de materiales reciclados, lo cual conlleva el beneficio ambiental y el ahorro en la construcción, dado que permite bajos costos, poco desperdicio de material y facilidad de montaje y transporte. El presente escrito propone un sistema de viviendas modulares prefabricadas con polímeros reciclados, con base en los antecedentes históricos de estas construcciones y sus técnicas actuales, para generar la creación de la variedad del diseño para enriquecer nuestro país.

El alemán llamado Andreas Froese, Fundo hace 8 años ECO- TEC Soluciones ambientales, un sistema de construcción a base de reciclar las botellas desechables de plástico PET, escombros y tierra. (J. Ignacio en Arquitectura, Julio 2008)

El sistema de muros de botellas plásticas es sumamente seguro, no requiere grandes conocimientos de ingeniería, por lo que las comunidades rurales podrían hacer uso de dicho sistema.
CAPÍTULO: PROBLEMA DE LA INVESTIGACIÓN.

1.1 PLANTEAMIENTO DEL PROBLEMA.

1. Hace algunos años se ha dado a conocer la construcción y a su vez han surgido diferentes polémicas, creando la incógnita de cual método de la construcción es más favorable para el medio ambiente.

Por consiguiente se presenta un problema el cual los seres humanos ha tratado de buscar soluciones prácticas que permite reducir el alto impacto y que beneficien a las comunidades que afecta directamente. Al conocer los procesos que permiten la utilización de nuevos materiales reciclados, podemos aplicar las bases de ingeniería y llegar a utilizarlos en la construcción, en otro ámbito estos materiales no es biodegradables, y se reutilizan en el proceso de construcción.

1.2 PREGUNTAS DE INVESTIGACIÓN.

1. ¿Cómo podemos crear estructura y obras pensando en la auto sostenibilidad y medio ambiental?

2. ¿Cómo determinar los beneficios del sistema constructivo y el diseño de ensamble para las viviendas en base al método constructivo?

3. ¿Cómo incentivar el uso de materiales reciclables?

4. ¿Cómo podemos implantar el uso de los plásticos?
1.3 JUSTIFICACIÓN.

Esta investigación se llevará a cabo para desarrollar la evaluación del sistema de construcción, sistema de muro de botellas de plástico reciclado, se seleccionó el muro de plástico reciclado porque un nuevo método construcción. Para el desarrollo y futuro conocimiento de la sostenibilidad ambiental.

Según el ministerio medio ambiente y el de obras públicas, el plástico al ser un material versátil, es el componente principal que más se desecha a diario en la basura. Es un material moldeable que se deja manipular con facilidad expuesto a altas temperaturas, con un proceso adecuado de reciclaje se puede convertir en una opción favorable en el ámbito de la construcción de viviendas a base de muros de plástico reciclado buscando así soluciones económicas y que contribuyan al medio ambiente.

1.4 OBJETIVOS DE LA INVESTIGACIÓN.

1.4.1 OBJETIVO GENERAL

Con esta investigación se busca el análisis de manera ambiental y económica al sistema de muros de botellas de plásticos reciclados, dando a conocer los análisis de costo, la seguridad laboral, generación y manejo de los desechos de cada proceso constructivo, uso, consumo y tratamiento del recurso natural como el agua para el sistema.
1.4.2 OBJETIVOS ESPECÍFICOS.

➢ Promover la construcción auto sostenible con el propósito de mitigar los impactos ambientales generados en las obras civiles.

➢ Determinar beneficio del el sistema estructural y el diseño de ensambles para las viviendas elaborada basado en este método constructivo.

➢ Establecer la importancia de la reutilización del plástico para la ejecución de viviendas.

➢ Promover la utilización del uso del plástico.

1.5 ANTECEDENTES GENERALES.

La naturaleza produce residuos, pero tiene la suficiente capacidad de procesarlos, integrándonos de nuevo al ciclo vital.

El ser humano representa una amenaza en este mecanismo, al producir residuos en grandes cantidades por su afán de consumo.

Durante la construcción, los sitios se encuentran particularmente vulnerables a la alteración ambiental. A menudo la construcción es un proceso rápido y desordenado, con gran énfasis en completar el proyecto y no en proteger el medio ambiente. Por lo tanto, pueden darse impactos ambientales innecesarios y gravemente dañinos. La vegetación es eliminada, exponiendo el suelo a la lluvia, el viento, y otros elementos. La excavación y nivelación empeoran aún más esta situación.

Uno de los grandes alcances que como profesionales podemos llegar a hacer en el ámbito de la construcción, es generar un equilibrio entre el desarrollo habitacional y el ecosistema, generando respuestas ecológicas y de protección ambiental.
En los muros de plástico su procedimiento de elaboración es similar al de un hormigón común, reemplazando los áridos pétreos por los plásticos triturados.

El propósito del trabajo es aportar una alternativa a otras tecnologías de construcción tradicionales, que consumen recursos no renovables, o que producen impacto ambiental negativo.

Los materiales como el plástico, en oposición a la idea de considerarlos un material altamente contaminante por ser inorgánico, puede ser una alternativa viable tanto para alzar un equilibrio en el ecosistema como también minimizar el impacto económico que una vivienda tradicional puede acarrear, la versatilidad y funcionalidad del plástico al ser un material duradero, resistente, entre otros aspectos, muestra otra forma de construir en serie, y otra manera de explorar el mundo, con soluciones que están a nuestro alcance.

Fuente: (Rosana Gaggino, 2013)

1.6 ALCANCES Y LÍMITES.

Indicar como podemos ayudar a la sostenibilidad de medio ambiente llevando así procesos naturales, químicos y físicos, para favorecer a la comunidad de la construcción atreves de un nuevo sistema de métodos de constructivos. Aquí se muestran alguna recomendación para llevarla a cabo.

- Concientizar a las personas para contribuir con el reciclaje de los desechos.
- Implementaremos el nuevo sistema de muros de botellas de plástico debido a que con este lograremos conocer una nueva forma de contribuir con el medio ambiente favoreciendo a la sociedad como factor principal para reducción de residuos.
No tendremos en cuenta los muros de plásticos reciclados ya que se realiza através de un proceso industrial.

1.6.1 LIMITACIONES:

Ningún material permite una producción en masa con la precisión y economía de los plásticos, lo que resultaría muy favorable para la solución del problema de construcción masiva de viviendas. Sin embargo, éstos presentan los problemas medioambientales comunes a la fabricación de los materiales derivados del petróleo, el consumo de energía no renovable, las dificultades de su reciclado, su combustibilidad y en algunos la toxicidad. Por otra parte, habría que atacar el problema de la transmisión de calor por radiación solar a los espacios cubiertos por materiales plásticos y la resistencia de los usuarios a habitarlos.

La mayor limitación que presenta el sistema es que no tiene reglamentación, ni estudio de caracterización a nivel mundial y nacional, que permitan desarrollar el comportamiento del sistema de muros de plásticos.
CAPITULO II: MARCO TEÓRICO.

2.1 Generalidades

Actualmente en la construcción se han ido implementando varios tipos de métodos constructivos, algunos beneficiosos para nuestro ecosistema, ayudando a que los materiales de construcción y los desechos sean de una forma u otra ecológicos.

Sin embargo, el nuevo sistema constructivo tales como la utilización de muros de plásticos, los cuales son los muros que se construyen con plástico reciclable. Dan gran envergadura para el inicio de una era de la construcción basada en la mejora del medio ambiente.

1.2 Los Plásticos.

El término plástico, en sentido estricto, se aplica a las sustancias de distintas estructuras y naturalezas que carecen de un punto fijo de ebullición y poseen durante un intervalo de temperaturas propiedades de elasticidad y flexibilidad que permiten moldearlas y adaptarlas a las diferentes formas y aplicaciones.

Por otro lado, generalmente cuando hablamos de plásticos nos referimos a ciertos tipos de materiales sintéticos obtenidos mediante fenómenos de polimerización o multiplicación artificial de los átomos de carbono en las largas cadenas moleculares de compuestos orgánicos derivados del petróleo y otras sustancias naturales.

Estos materiales suelen poseer las siguientes propiedades y características:

- Son sencillos de trabajar y modelar.
- Tienen un bajo costo de producción.
Presentan una alta relación resistencia/densidad.

Son (por lo general) impermeables.

Buenos aislantes, tanto eléctricos como térmicos, y unos aceptables aislantes acústicos.

Resistentes a la corrosión es decir oxidación a los ácidos, álcalis y disolventes.

No son biodegradables.

Todas estas características los hacen perfectos para multitud de usos, por eso podemos encontrarlos habitualmente, en nuestra vida diaria, en campos tan distintos como en la alimentación, la industria automovilística o aeronáutica, en la agricultura, entre otros.

Fuente: (Universidade da Coruña (UDC))

1.2.1 Tipos y características:

Los plásticos se pueden clasificar según el origen de su monómero base en:

Naturales: derivados de productos de origen natural como la celulosa (celuloide, celofán...), el caucho (goma, ebanite...) o la caseína.

Sintéticos: Derivados del petróleo o del gas, productos previamente transformados por el hombre (de los que nos vamos a ocupar en este documento).

Fuente: (Universidade da Coruña (UDC))
Según su comportamiento térmico:

Termoplásticos: sus macromoléculas están dispuestas libremente sin entrelazarse. Esta disposición los convierte en plásticos o deformables a temperatura ambiente, a altas temperaturas se convierten en líquidos y a bajas temperaturas endurecen. Este tipo de plásticos son fácilmente reciclables, ya que al calentarse se funden y por lo tanto se pueden moldear repetidas veces sin que sus propiedades originales se vean demasiado alteradas. Aun así, durante los distintos ciclos de reciclaje van sufriendo modificaciones, por lo que no pueden ser reutilizados más de 5 o 7 veces. La mayoría de los plásticos que usamos habitualmente pertenecen a este grupo.

Termoestables: Son macromoléculas se cruzan formando una red de malla cerrada. Esto provoca que estos materiales, una vez sufrido los procesos de calentamiento. Fusión y formación-solidificación, sean rígidos y no vuelvan a fundirse. Esto dificulta su reciclado, ya que solo pueden someterse a procesos de reciclado químico.

Elastómeros: Sus macromoléculas se ordenan en forma de red de malla con pocos enlaces. Son plásticos de gran elasticidad, se deforman al ser sometidos a un esfuerzo y recuperan su forma en cuanto este cesa. No soportan el calor y se degradan a temperaturas no muy elevadas, lo que dificulta su reciclaje. **Fuente:** *(Universidade da Coruña (UDC)).*

La ventaja de las botellas de plástico PET (Lo cual es la abreviatura de polietileno tereftalato, una resina plástica, una forma de poliéster y es un tipo de materia prima plástica derivada del petróleo) es que es un elemento que ya se encuentra procesado y se puede
encontrar en un estado óptimo para ser reutilizado, su característica principal es su flexibilidad, la capacidad de soportar tracción y ser elástico antes de su falla.

Se basa en llenar en su totalidad las botellas con arena para que estas sean más resistentes, puesto que al estar compactas por dentro se vuelven un elemento bastante fuerte que resiste compresiones, también que al tener grandes cantidades de ellas trabajando al mismo tiempo se obtiene un trabajo en masa que permite crear estructuras de gran tamaño.

Para el adecuado uso de estas, hay que verificar que ninguna botella presente agujeros que permitan la salida de la arena, asimismo de que todas las botellas que se vayan a implementar en un muro, en este caso, tengan las mismas dimensiones, Cabe destacar que estas deben tener su respectiva tapa para así asegurar que el material no vaya a ser expulsado por la presión.

Las principales botellas usadas para estas viviendas son las de gaseosa, debido a que hay gran cantidad disponibles dado que su producción es continua y su tiempo de uso es bastante corto, ya que posee pequeñas cantidades de líquidos y al terminarse son desechadas inmediatamente.

Las botellas pueden variar dependiendo de su capacidad, en este caso es preferible que sean botellas pequeñas que no superen la capacidad de un litro, pues si es mayor no servirán para las dimensiones que fueron previamente diseñadas para la estructura, adicional que las botellas más pequeñas son mucho más funcionales a la hora de trabajar en conjunto.

Los residuos plásticos son seleccionados, triturados con un molino especial, y así son incorporados a mezclas cementicias, sin necesidad de un lavado previo, salvo en el caso que se utilicen residuos muy contaminados tomados de la basura, sin un acopio separado. El bajo
requerimiento de limpieza se explica porque los desechos quedan confinados en la masa de un hormigón.

Las superficies de los cerramientos ejecutados con estos elementos constructivos deben ser revocadas con un mortero común de albañilería, elaborado con materiales pétreos convencionales. Por eso el aspecto de una vivienda construida con estos componentes no difiere en absoluto con otras tradicionales.

En el caso de los envases de PET, no es necesario sacarle etiquetas ni tapas previo al proceso de triturado. No se pueden utilizar envases procedentes de la industria agroquímica y en general, aquellos que puedan haber estado en contacto con sustancias tóxicas. Para la fabricación de los elementos constructivos se utilizó un procedimiento similar al de un hormigón común, pero reemplazando áridos por plásticos reciclados.

La mezcla de hormigón es vertida en una máquina de fabricar ladrillos, o en una máquina bloqueada, o en moldes de tipo manual, según el tipo de elemento constructivo de que se trate. En ellos se realiza una compactación mecánica o manual. Luego del desmolde los elementos constructivos deben ser curados con agua en forma de lluvia una, o bien sumergidos en un piletón con agua. A los 28 días de haber sido fabricados pueden ser utilizados en obra.

Fuente: (ucatolica.metabiblioteca.org, 2015)

1.3 Encofrado:

Según el ministerio de obras públicas, los encofrados podrán ser confeccionados con madera de buena calidad o serán metálicos con juntas que no permitan que escape de hormigón. Su consistencia deberá ser de tal que retenga el hormigón sin abultarse y que pueda quitarse sin causar vibraciones ni perjudicar el hormigón. Los encofrados deberán tener interiormente la misma forma, dimensiones, niveles y aplomos que han de tener.
Los encofrados, dependiendo de su utilización y del material que se emplée, puede cumplir un número determinado de usos, por lo general los encofrados de un sólo uso son los que nos sirven para encofrar lugares a los que no podemos acceder con facilidad.

1.4 SEGURIDAD LABORAL.

1.4.1 Sistema de muros de plásticos reciclados.

Este método básicamente consiste en una recolección de desecho para llevarse a una limpieza de reciclaje y a su vez es un proceso químico de limpieza.

Este material ofrece una gran ventaja, facilita el reciclado de la enorme cantidad de desechos plásticos que produce la humanidad.

Con plástico procesado con extrusión se le da forma a bloques normalizados muy livianos, que encajan entre sí, como piezas de un juguete de construcción.

Es fácil así levantar una casa real, no hace falta personal especializado para manejar este material, parte de un sistema de construcción.

Todas las partes necesarias han sido pensadas y producidas para ensamblarse fácilmente. Las uniones de la estructura se refuerzan con planchas de acero y gruesos tornillos.

1.5 Procedimiento para la creación de un bloque de plástico para la construcción:

La forma del bloque de plástico recuperado es rectangular, alargada y comprendida por dos caras extremas, dos paredes laterales y dos superficies; la superior y la inferior. En el centro de la superficie superior y de la pared lateral derecha se configura una depresión o canal del mismo ancho de las caras extremas y en el centro de la superficie inferior y de la pared lateral izquierda se configura un relieve o espigo también del mismo ancho de las caras extremas, los
cual es complementariamente con los canales y espigas de un bloque colindante idéntico que se adosado horizontal o verticalmente.

- Los bloques que sean superpuestos deben ponerse desplazados medio bloque en el sentido de su longitud para obtener así un invertebrado.

- El bloque de plástico recuperado contiene en el centro de la superficie superior y de la pared lateral derecha una depresión o canal del mismo ancho de las caras extremas y en el centro de la superficie inferior y de la pared lateral izquierda se configura un relieve o espigón también del mismo ancho de las caras extremas, los cuales hacen que puedan ensamblarse vertical y horizontalmente unos con otros siendo todos ellos idénticos.

- El bloque de plástico recuperado se caracteriza además porque contiene cuatro orificios: verticales, internos, pasantes y equidistantes que van desde la parte superior, hasta la parte inferior.

Fuente: Según el blog de arquitectura (2011) "Todas las partes necesarias han sido pensadas y producidas para ensamblarse fácilmente. Las uniones de la estructura se refuerzan con planchas de acero y gruesos tornillos, Vigas, columnas, alféizar, viguetas para el techo, todos los elementos se van articulando en la obra. Una casa moderna de plástico puede recuperar cinco toneladas del material y dura unos 500 años."
1.6 Tipos de reciclaje de plásticos conocidos en el mundo y usos previstos.

En el mundo se utilizan distintos procedimientos para reciclar los plásticos:
El reciclado mecánico. Lleva varias etapas donde se realiza: La separación manual, el triturado en partículas, clasificación de partículas por aire, lavado, inmersión en agua y separación electrostática.

Fuente: (Emilia Ugarte, 2016)

El reciclado químico: Deshace o polimeriza el plástico, separándose las moléculas que lo componen, las cuales se emplean para fabricar otra vez plásticos. Dependiendo de su pureza, este material puede usarse incluso, para el envasado de alimentos.

Fuente: (Emilia Ugarte, 2016)
El reciclado energético: Consiste en incinerar el plástico para generar energía, lo cual tiene como inconveniente la contaminación atmosférica que produce. El más costoso de estos tres procedimientos es el químico, pero es el que permite obtener productos con un mayor valor agregado. Este procedimiento es de uso corriente en países desarrollados como los de la Comunidad Económica Europea o los Estados Unidos.

El proceso que se llevara a cabo la fabricación del muro de botella de plástico será el manual ya que este consiste en separar las botellas, limpiarla y llévala a su colocación según el proyecto establecido. Fuente: (Gaggino, 2009)

1.7 TIPOS DE PLASTICOS.

PET o PETE (tereftalato de polietileno). Este es uno de los plásticos reciclados con más frecuencia por los consumidores. Incluyen algunas botellas de refrescos, botellas de agua de plástico, tarros de mantequilla, envolturas de plástico y botellas de aderezo para ensaladas.

HDPE (polietileno de alta densidad). Este tipo de plástico reciclable es también con frecuencia reciclado por los consumidores. Los plásticos incluidos en esta categoría incluyen algunos cartones de leche de plástico, botellas de jugo, botellas de champú y envases de detergente líquido.

PVC (poli cloruro de vinilo). Este tipo de plástico reciclable es menos aceptado en los centros de reciclaje local. Se encuentra en una serie de paquetes de alimentos, envases de detergente líquido, y muchas aplicaciones incluyendo la construcción de los conos de tráfico.

LDPE (Polietileno de baja densidad). Este tipo de plástico reciclable, se utiliza en algunos empaques de pan y bolsas de comida congelada, botes de basura y bolsas de basura.
PP (Polipropileno). Un plástico de uso común en la industria del automóvil y la construcción, son plásticos que también son reciclables e incluyen algunas cubiertas para baterías de automóvil, embudos de petróleo y pajitas de plástico para beber.

PS (Poli estireno). También es un tipo poco común de plástico reciclable, este tipo de plástico incluye empaques de espumas, cubiertos de plástico, protección para el embalaje de productos electrónicos y juguetes.

Algunos tipos de plástico no se pueden reciclar, ya que comúnmente se hacen con una combinación de los últimos seis tipos de plástico, o con un tipo de plástico que no esté dentro de los seis anteriores. Aquí se incluye el plástico reciclable de las botellas reutilizables de galón de agua. Fuente: (Universidade da Coruña (UDC))

Definitivamente, la mejor manera de averiguar cuál son los tipos de plásticos que se pueden reciclar es llamando a las oficinas municipales de gestión de residuos o al centro de reciclaje local.

Fuente: (clasificacion del plastico).
1.8 RESIDUOS Y DEMOLICIÓN DE LA CONSTRUCCIÓN.

(Romero, 2006-07) La generación de residuos de Construcción y Demolición (en adelante RCD) está íntimamente ligada a la actividad del sector de la construcción, como consecuencia de la demolición de edificaciones e infraestructuras que han quedado obsoletas, así como de la construcción de otras nuevas.

Se consideran residuos de construcción y demolición (en adelante RCD) aquellos que se generan en el entorno urbano y no se encuentran dentro de los comúnmente conocidos como Residuos Sólidos Urbanos (residuos domiciliarios y comerciales, fundamentalmente), ya que su composición es cuantitativa y cualitativamente distinta.

Se trata de residuos, básicamente inertes, constituidos por: tierras y áridos mezclados, piedras, restos de hormigón, restos de pavimentos asfálticos, materiales refractarios, ladrillos, cristal, plásticos, yesos, ferradlas, maderas y, en general, todos los desechos que se producen por el movimiento de tierras y construcción de edificaciones nuevas y obras de infraestructura, así como los generados por la demolición o reparación de edificaciones antiguas.

1.8.1 ORIGEN

(Romero, 2006-07) El origen de los residuos de construcción y demolición tal y como su nombre indica, provienen de la construcción y demolición de edificios e infraestructuras; rehabilitación y restauración de edificios y estructuras existentes; construcción de nuevos edificios y estructuras; así como de la producción de materiales de construcción, por ejemplo, una máquina de hacer hormigón, componentes del hormigón, artículos de madera, etc.
El sector de la construcción y edificación puede dividirse de acuerdo al objeto de la construcción en:

Sector de la edificación, vivienda y edificios utilitarios el cual incluye:

El sector de la vivienda que se dedica a la construcción, mantenimiento y renovación de viviendas.

El sector de edificación utilitaria que construye mantiene y renueva oficinas, edificios industriales y similares.

Sector de infraestructuras que incluye:

Construcción de carreteras;

Otras infraestructuras especiales (puentes, túneles, canales etc.)

1.8.2 **COMPOSICIÓN.**

(Romero, 2006-07) La composición de los RCD, varía en función del tipo de infraestructuras de que se trate y refleja en sus componentes mayoritarios, el tipo y distribución porcentual de las materias primas que utiliza el sector, si bien hay que tener en cuenta que éstas pueden variar de un país a otro en función de la disponibilidad de los mismos y los hábitos constructivos. Los materiales minoritarios dependen en cambio, de un número de factores mucho más amplio como pueden ser el clima del lugar, el poder adquisitivo de la población, los usos dados al edificio etc. Por otro lado, la composición de las edificaciones varía a lo largo del tiempo y con ello también cambia la composición de los RCD, según sea la edad del edificio o estructura que es objeto de demolición.
En la Tabla Siguiente se indica una posible distribución del porcentaje en volumen de las distintas materias primas utilizadas en la construcción.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PORCIENTO EN VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARENA</td>
<td>60%</td>
</tr>
<tr>
<td>YESO NATURAL</td>
<td>1%</td>
</tr>
<tr>
<td>METALES</td>
<td>4%</td>
</tr>
<tr>
<td>GRAVA</td>
<td>14%</td>
</tr>
<tr>
<td>CALIZA (PRODUC. DE CMT)</td>
<td>6%</td>
</tr>
<tr>
<td>ARCILLA</td>
<td>6%</td>
</tr>
<tr>
<td>PIEDRA NATURAL</td>
<td>4%</td>
</tr>
<tr>
<td>MADERA</td>
<td>2%</td>
</tr>
<tr>
<td>PETROLEO (PLASTICOS)</td>
<td>3%</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabla 1. Porcentajes el volumen de los diferentes materiales para la construcción.

Los residuos que llegan a vertedero contienen un 75% de escombros desglosados en los siguientes materiales:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PORCENTAJE EN VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LADRILLOS, AZULEJOS Y OTROS CERÁMICOS.</td>
<td>50%</td>
</tr>
<tr>
<td>HORMIGÓN</td>
<td>60%</td>
</tr>
<tr>
<td>PIEDRA</td>
<td>3%</td>
</tr>
<tr>
<td>ARENA, GRAVA Y OTROS ARIDOS.</td>
<td>5%</td>
</tr>
<tr>
<td>MADERA</td>
<td>3%</td>
</tr>
<tr>
<td>VIDRIO</td>
<td>50%</td>
</tr>
<tr>
<td>PLÁSTICOS</td>
<td>46.6%</td>
</tr>
<tr>
<td>METALES</td>
<td>2.5%</td>
</tr>
<tr>
<td>ASFALTO</td>
<td>10%</td>
</tr>
<tr>
<td>YESO</td>
<td>0.2%</td>
</tr>
<tr>
<td>PAPEL</td>
<td>5.0%</td>
</tr>
<tr>
<td>BASURA</td>
<td>70%</td>
</tr>
<tr>
<td>OTROS:</td>
<td>4%</td>
</tr>
</tbody>
</table>

Tabla 2. Contenido de residuo de los materiales.

Fuente: (Urbáez, 2013)
1.8.3 CLASIFICACIÓN.

(Romero, 2006-07) La Unión Europea está orientando la política de gestión de los RCD hacia un reciclaje masivo de los mismos, por esta razón, un posible agrupamiento de los RCD podría realizarse en base a su composición, relacionándolos con asuntos tales como la separación selectiva, la recogida selectiva (demolición selectiva) y también la peligrosidad de parte de los mismos.

En este sentido de los residuos de construcción y demolición podrían clasificarse en:

RCD no inertes que justifican una separación y recogida selectiva. Existen materiales y productos cuya separación selectiva se justifica en función del valor económico que pueden presentar.

RCD inertes que justifican una separación y recogida selectiva.

La justificación principal para la separación selectiva de materiales inertes contenidos en la corriente destinada a machaqueo es económica. Los metales presentan un valor de reventa bien establecido y en algunas zonas y determinados momentos, materiales tales como ladrillos y tejas presentan una demanda considerable. Lo mismo puede decirse de los ladrillos refractarios que mayoritariamente son reciclables para la producción de nuevos refractarios.

RCD peligrosos y potencialmente peligrosos.

El carácter peligroso de los RCD, puede deberse a causas diferentes, como son:

Que los materiales utilizados originalmente contuviesen proporciones altas de materiales que eran por sí peligrosos, como los fibrocementos, el plomo, los alquitranes y residuos de preservantes, adhesivos, colas y sellantes y ciertos plásticos.
Algunos materiales se convierten en peligrosos como consecuencia directa del medio en el cual han estado durante muchos años.

Un ejemplo sería el de una industria en la que se han producido reacciones de superficie entre el material original inerte de los edificios y agentes químicos procedentes de procesos internos o próximos, arrastrados por el aire o el agua, y que han convertido en peligrosos a parte de los materiales de fábrica de la industria.

Algunas corrientes de RCD se convierten en peligrosas si materiales peligrosos se dejan en ellos y/o se mezclan con ellos. Este es el caso de envases de pinturas arrojados al acopio de ladrillos y hormigón, convirtiendo a todo el apilamiento en peligro.

El tipo de edificación/estructura y la época en que fue construida son los factores que más influyen en la presencia de residuos peligrosos, tanto en cantidad como en su tipología.

Una vez se han generado este tipo de RCD peligroso, la gestión a realizar sobre los mismos, debe ajustarse a lo indicado en la legislación vigente. Hasta ahora se ha expuesto una posible clasificación de los RCD, atendiendo como indicó, a la composición y gestión final.

Sin embargo, las clasificaciones de estos residuos pueden ser varias y así, atendiendo al origen de estos, se pueden distinguir:
1. **Residuos de demolición**: Son los originados en las operaciones de demolición y derrumbe de edificios e instalaciones.

2. **Residuos de construcción**: Provienen del proceso de ejecución de los trabajos de construcción propiamente dichos.

3. **Residuos de excavación**: Son el resultado de los trabajos de excavación previos a la construcción.

A su vez, los RCDs también pueden clasificarse, en función de sus características de peligrosidad, en:

1) **Residuos inertes**: Aquellos residuos no peligrosos que no experimentan transformaciones físicas, químicas o biológicas significativas.

2) **Residuos especiales**: Son aquellos potencialmente peligrosos para la salud y el medio ambiente, debido a su composición y propiedades, como se ha visto.

3) **Residuos banales**: Aquellos que presentan una naturaleza similar a los residuos domésticos.

Al hablar de RCDs, se suelen visualizar enormes masas de escombros generados en las obras de construcción y, sobre todo, de demolición y rehabilitación de edificios. Lo que no es del todo errado, puesto que los expertos calculan que por cada metro cuadrado derruido se genera una tonelada de restos, las mayores partes reciclables, similares en su composición a los que abarrotan los cientos de contenedores que vemos en las calles de las grandes ciudades.

Todos estos, que se califican como de Nivel II en la terminología sectorial, son los realmente conflictivos, ya que incluyen la explosiva mezcla de materiales de todo tipo citada con anterioridad. Hay otros materiales, llamados también residuos por extensión, que plantean
problemas muchos menores. Son los calificados como de Nivel I y están formados por las ingentes cantidades de tierra que se extraen y remueven para las cimentaciones y, sobre todo, para la apertura de las grandes vías de comunicación. Se trata, en general, de tierras limpias, sin elementos contaminantes o agresivos con el entorno, y suelen utilizarse en un 50% para rellenos y terraplenes en torno a las propias vías de comunicación o de la obra que se está realizando.

Fuente: (Romero, 2006-07)

Separar para reciclar.

Los restos generados en derribos, demoliciones y obras de reforma no son los mismos en todos los casos, pero, en general, contienen más del 70% de materiales inertes, de origen mineral, que pueden reciclarse como áridos para distintos usos.

Lo ideal, y en algunas grandes obras se hace, es efectuar una separación y selección previa de los materiales de desecho, apartando, para un posterior tratamiento en plantas de valoración y/o recuperación, los restos más inocuos (papel y cartón, madera, hierro, aluminio y otros metales, cristal, etc...) y los tóxicos y peligrosos (barnices, material aislante, pinturas, minerales pesados, disolventes...), que aunque son una parte mínima hay que segregar y tratar con sumo cuidado en instalaciones adecuadas.

En las obras nuevas se genera un porcentaje mayor de materiales no minerales (envases y embalajes) y especiales (plásticos, pinturas, disolventes, siliconas...), que complican y encarecen los procesos de separación. Un proceso que raramente se da en origen en las pequeñas, pero frecuentísimas, obras de reparación, rehabilitación, reforma o mantenimiento de edificios y locales (no hay más que reparar en el contenido de los miles de contenedores
asentados en nuestras calles), cuyos residuos suelen acabar, hoy por hoy, en vertederos de todo tipo.

(Romero, 2006-07). La ventaja de esta opción es la de impedir la contaminación debido a que a través de este mecanismo desaparece el residuo, reconvirtiendo las tareas de demolición o desmontado de edificaciones existentes y la recogida de restos en las unidades de obra nuevas, formando parte de un nuevo proceso de producción con los materiales que van a ser reutilizados.

Las opciones de reutilización son las siguientes:

- Reutilización directa en la propia obra.
- Reutilización en otras obras.

La reutilización directa en la propia obra implicaría dos fases:

- Selección previa del material desmontado.
- Limpieza previa del mismo.

Una vez seleccionado y limpio, el residuo se encuentra en perfecto estado para ser reutilizado. Con esta alternativa, los productos originales no son alterados en su forma ni en sus propiedades. La reutilización en otras obras es una alternativa igual que la anterior desde el punto de vista productivo, con la diferencia de que es necesario transportar los materiales a las obras de destino. Sin embargo, desde un punto de vista económico la situación es muy diferente, llegando a presentar incluso inconvenientes, ya que, en este caso, la decisión sobre el nuevo destino de los materiales que van a ser reutilizados, está vinculada a la existencia de mercados donde se vendan y compren los productos obtenidos como residuo de otras obras.
Estos se denominan mercados secundarios y aunque la situación difiere mucho de unos lugares a otros, son en general escasos, encontrándose a lo sumo, mercados para el acero, la madera y algunos productos específicos como pueden ser las tejas.

Residuos de acero. Se originan fundamentalmente en la colocación de armaduras metálicas en estructuras, y como residuos de envases de latas en los que se suministran pinturas, disolventes, etcétera. En el caso de los residuos provenientes de las estructuras de hormigón armado, son de fácil separación mediante métodos electromagnéticos o correcto almacenamiento en un contenedor durante la obra, teniendo gran posibilidad de reutilización en la misma o en otras edificaciones en caso de tener una calidad óptima.

En caso contrario, se puede valorizar como chatarra. En el caso de las latas en los que queda inevitablemente restos de pinturas, es conveniente primero agotar el resto de pintura en la obra y también, no mezcladas con otros residuos por su carácter de peligrosidad, recogiéndolas en un contenedor específico.

Residuos de Hierro. Debido a su durabilidad, se pueden reutilizar en la misma obra o en otras, e igualmente, se pueden valorizar en plantas de reciclado o como chatarra, previa separación electromagnética o recogida y almacenamiento selectivos.

Residuos de policarbonato, polietileno, poli estireno, poliuretano. Se suelen generar en forma de residuos de envases en la construcción de obras de nueva planta. Por tanto, en los derribos y obras de demolición apenas se generan. Los plásticos de embalajes se pueden reciclar fácilmente. Como se suelen generar en el lugar de acopio y suministro de productos, el propio proveedor del material puede recogerlos y reutilizarlos.

Sin embargo, existen otros plásticos cuyo reciclado es muy complejo, existiendo como posibilidad última la valorización energética y el vertedero de sobrantes especiales.
En general, los plásticos de construcción no son reciclados por estar muy degradados y contaminados. Por ello sería conveniente disponer en obra una cuba específica para poder retirar estos y hacer más viable su valorización.

Fuente: Tecnología de los plásticos (tecnologiadelosplasticos.blogspot.com, 2011)
CAPITULO: MARCO CONCEPTUAL

3.1 VARIABLES FUNDAMENTALES

1.8.4 CONCEPTOS CLAVES

Plásticos: El término plástico, en sentido estricto, se aplica a las sustancias de distintas estructuras y naturalezas que carecen de un punto fijo de ebullición y poseen durante un intervalo de temperaturas propiedades de elasticidad y flexibilidad que permiten moldearlas y adaptarlas a diferentes formas y aplicaciones.

Reciclaje o reciclamiento: (definicion.de) ”Es la acción y efecto de reciclar (aplicar un proceso sobre un material para que pueda volver a utilizarse). El reciclaje implica dar una nueva vida al material en cuestión.”

Seguridad Laboral: Hay quienes prefieren utilizar el término salud laboral, refiriéndose al concepto amplio y universal de salud de la Organización Mundial de la Salud OMS, para la que dicha palabra significa no solo ausencia de toda enfermedad, incluidas las lesiones, sino el estado de bienestar físico, psíquico y social, lo que suele llevar a connotaciones casi exclusivamente sanitarias. Con la distinción entre accidentes de trabajo (lesiones y en general daños inmediatos) y enfermedades profesionales (de curso más o menos largo) se acuñó el término seguridad e higiene del trabajo, refiriéndose tanto a las técnicas de lucha contra los accidentes (seguridad) como contra las enfermedades (higiene) y como a la calidad de unas condiciones de trabajo.

Tratamientos de Recursos: El tratamiento de residuos es la fase final de las actividades de lucha contra la contaminación. Su objetivo es la eliminación de cualquier traza de contaminación o de riesgo perjudicial y el reciclaje de los residuos.
1.8.5 **ELEMENTOS DEL PROCESO CONSTRUCTIVOS DE MUROS PLÁSTICOS RECICLADOS.**

Tabla 3. Elemento del proceso constructivo

<table>
<thead>
<tr>
<th>MUROS PLÁSTICOS RECICLADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. El proceso comienza con la etapa de recolección de cualquier botella de plástico.</td>
</tr>
<tr>
<td>2. El proceso consiste en llenar las botellas de plástico con arena y atar unas con otras para asegurar una estructura enderezada.</td>
</tr>
<tr>
<td>3. Tras el primer secado, se le aplica una nueva capa de barro y, realizando esta maniobra consecutivamente, aumenta la resistencia de la cubierta y el grosor de los 'tabiques'.</td>
</tr>
<tr>
<td>4. El resto de estas peculiares casas se fábrica de manera corriente ya que las botellas solo sirven de armazón, revestimiento y distribución de la vivienda. Las tuberías, sistemas de evacuación, cuadros eléctricos, el suelo, ventanas y demás acabados se realizan de manera tradicional y común a otras viviendas.</td>
</tr>
<tr>
<td>5. Lo más complicado pasa por encontrar 8.000 botellas de plástico necesarias para levantar una casa estándar de unos 38 metros cuadrados en sólo 20 días.</td>
</tr>
</tbody>
</table>

Fuente: *(J. Ignacio en Arquitectura, Julio 2008)*
1.8.6 VENTAJAS Y DESVENTAJAS

- MÉTODO MURO DE PLÁSTICO

Tabla 4. Ventajas y desventajas sistema de muro con botellas de plásticos.

<table>
<thead>
<tr>
<th>VENTAJAS</th>
<th>DESVENTAJAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞ Térmico.</td>
<td>∞ No son degradables.</td>
</tr>
<tr>
<td>∞ Acústico</td>
<td>∞ No son capaces de soportar cargas muy pesadas a diferencia del hormigón.</td>
</tr>
<tr>
<td>∞ Más económico.</td>
<td>∞ Malos aislantes térmicos, por estar realizado de botella plástico el cual puede derretirse a altas temperaturas.</td>
</tr>
<tr>
<td>∞ Más resistente.</td>
<td>∞ Debido a que es material nuevo, no se produce fácilmente variedades decorativas como los convencionales para decorar fachadas, muros, jardines, etc.</td>
</tr>
<tr>
<td>∞ Menos manos de obra.</td>
<td></td>
</tr>
<tr>
<td>∞ Resistente al salitre.</td>
<td></td>
</tr>
<tr>
<td>∞ Reduce el tiempo de instalación.</td>
<td></td>
</tr>
<tr>
<td>∞ Más elástico ante la presencia sismo.</td>
<td></td>
</tr>
<tr>
<td>∞ Más ligero que los sistemas tradicionales.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: (J. Ignacio en Arquitectura, Julio 2008)
1.9 ANÁLISIS DE COSTOS

1.10 Sistema Muros de plásticos reciclados.

Tabla 5. Análisis de una vivienda de 50m2 de 20 Cm de espesor en muros con una altura de 2.5m, de con botellas de plásticos reutilizado.

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio</th>
<th>Subtotal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botellas De Plásticos Pet</td>
<td>19,120</td>
<td>UD</td>
<td>1</td>
<td>19120</td>
<td></td>
</tr>
<tr>
<td>Pegamento Plastiwall</td>
<td>100</td>
<td>cubeta</td>
<td>580</td>
<td>58000</td>
<td></td>
</tr>
<tr>
<td>Mano De Obra</td>
<td>30</td>
<td>día</td>
<td>500</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>Arena Itabo</td>
<td>9.5</td>
<td>m2</td>
<td>3078</td>
<td>29241</td>
<td></td>
</tr>
<tr>
<td>Malla Electrosoldada</td>
<td>14</td>
<td>Rollos</td>
<td>6000</td>
<td>84000</td>
<td></td>
</tr>
<tr>
<td>Mortero 1/3</td>
<td>9.25</td>
<td>M2</td>
<td>12265</td>
<td>113451.3</td>
<td></td>
</tr>
<tr>
<td>Acero 3/8 Refuerzo Huecos</td>
<td>8</td>
<td>QQ</td>
<td>1640</td>
<td>13120</td>
<td></td>
</tr>
<tr>
<td>Madera P/Moldes Enlatas 2*4" *12 pie</td>
<td>24</td>
<td>UD</td>
<td>168</td>
<td>4032</td>
<td></td>
</tr>
<tr>
<td>Puertas</td>
<td>4</td>
<td>UD</td>
<td>3800</td>
<td>15200</td>
<td></td>
</tr>
<tr>
<td>Ventas correizas</td>
<td>10</td>
<td>UD</td>
<td>2400</td>
<td>24000</td>
<td></td>
</tr>
<tr>
<td>Inodoro</td>
<td>1</td>
<td>UD</td>
<td>2200</td>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>Lavamanos</td>
<td>1</td>
<td>UD</td>
<td>1400</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Fregadero</td>
<td>1</td>
<td>UD</td>
<td>2300</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>Fregadero En Mármol</td>
<td>1</td>
<td>UD</td>
<td>1850</td>
<td>1850</td>
<td></td>
</tr>
<tr>
<td>Tubo de PVC</td>
<td>100</td>
<td>M</td>
<td>95</td>
<td>9500</td>
<td></td>
</tr>
<tr>
<td>Tubo eléctrico</td>
<td>200</td>
<td>M</td>
<td>45</td>
<td>9000</td>
<td></td>
</tr>
<tr>
<td>Aparatos de plomería</td>
<td></td>
<td></td>
<td></td>
<td>8500</td>
<td></td>
</tr>
<tr>
<td>Aparatos eléctricos</td>
<td></td>
<td></td>
<td></td>
<td>7450</td>
<td></td>
</tr>
<tr>
<td>Concreto</td>
<td>75</td>
<td>M3</td>
<td>700</td>
<td>52500</td>
<td></td>
</tr>
<tr>
<td>Cerámica</td>
<td>5</td>
<td>M2</td>
<td>950</td>
<td>4750</td>
<td></td>
</tr>
<tr>
<td>Pegamento De Cerámica</td>
<td>3</td>
<td>Funda</td>
<td>1120</td>
<td>3360</td>
<td></td>
</tr>
<tr>
<td>Derretido</td>
<td>3</td>
<td>UD</td>
<td>450</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>Enlatas</td>
<td>10</td>
<td>UD</td>
<td>325</td>
<td>3250</td>
<td></td>
</tr>
<tr>
<td>Aluzinc</td>
<td>8</td>
<td>Plancha</td>
<td>1850</td>
<td>14800</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | 481424.3 |
CAPÍTULO III: MARCO METODOLÓGICO

4.1 FORMULACIÓN DE HIPÓTESIS

Cómo implementar el método de la construcción con la solución más ecológica para el medio ambiente.

1.2 Enfoque de la investigación

El enfoque de esta investigación es de carácter mixto en vista de que se necesitaron datos cuantitativos y cualitativos para poder arrojar una solución a la investigación sobre el método de construcción.

1.3 Tipos de investigación

Cuantitativo: Es el procedimiento de decisión que pretende señalar, entre ciertas alternativas, usando magnitudes numéricas que pueden ser tratadas mediante herramientas del campo de la estadística.

Cualitativo: Es un adjetivo que se emplea para nombrar a aquello Vinculado a la cualidad (el modo de ser o las propiedades de algo).

1.4 PROCEDIMIENTO DE INVESTIGACIÓN.

- Recolección del procedimiento del sistema de muros plásticos reciclados.
- Análisis de procesos de recolección de desecho para construcciones ecológica.
1.5 METODO DE INVESTIGACION.

Esta investigación es de método deductivo y método inductivo.

Método deductivo: El método deductivo deriva o colige aspectos particulares de las leyes, axiomas, teorías o normas.

Método inductivo: En este se parte de los fenómenos particulares cuya incidencia forma la ley de lo particular a lo general.
CAPÍTULO IV: RESULTADOS.

5.1 CONCLUSIÓN.

Según los resultados de los análisis de sistema, es posible concluir:

Respecto a la opción más factible con relación al costo, marco ambiental y al tiempo es el sistema de botellas de plástico, porque en el proceso de construcción se utiliza un material reciclado y la necesidad de mano de obra ha disminuido considerablemente y por lo tanto ha disminuido su tiempo al momento de construir. También, al ser un material de reciclado manual, tiene un procedimiento versátil y autodidáctico.

El método de muro con botellas de plásticos ayuda a reducir los desechos.

Por otra parte, el nivel de resistencia el sistema de muros de botellas de plásticos tiene gran resistencia, porque tienen alta densidad la cual permite tener la resistencia requerida.

Al construir muros con el sistema de botellas de plástico reciclado ahorramos tanto en mano de obra, como en material y equipos de construcción. Materiales tales como la grava, arena, hormigón y otras herramientas se hacen visible a la hora de costear dicho proyecto.

Los materiales utilizado para la construcción con el sistema de muros de plásticos reciclados son de gran resistencia y de Fácil acceso, lo que permite reducir costos y disminuir los impactos Medioambientales, cumpliendo así los requisitos o criterios para una construcción más ecológica.

- Usar materiales con bajo impacto ambiental en su fabricación.
- Considerar la contaminación que produce su elaboración.
- La cantidad y tipo de energía que consume
- Usar recursos renovables.
- Usar recursos reciclables.
- Tecnologías de aguas reusadas.
- Usar materiales renovables y/o Reciclables.
- Materiales utilizados en la construcción.
- Usar recursos naturales tales como el agua de lluvia y la energía solar.
1.6 RECOMENDACIONES

- Es recomendable utilizar el método de muro de plásticos para mejorar la sociedad en el ámbito ambiental y es de un menor costo. Creando viviendas adecuados al ambiente. Para llevar a cabo este nuevo sistema constructivo, primero se debe implementar las medidas necesarias para desarrollar en nuestra cultura el arte de reciclar.

- Concientizar a cada ciudadano/ ciudadana la importancia de reciclar o reutilizar algunos elementos convirtiéndolos amigables para nuestro ecosistema.

- El método de muros con botellas de plástico ayuda a disminuir la cantidad de desecho ya que se construye con plástico reutilizado. A su vez elimina criaderos de enfermedades porque evita que haya agua posada, además crea nuevas soluciones económicas para las personas de poco ingreso.
BIBLIOGRAFÍA

- Adfer Daznell. Replast. Blog de arquitectura. 16-10-2016. disponible en: blog.is-arquitectura.es
- Prototipo Vivienda de bajo recursos con material reciclado. (online y pdf) 10983,2423 disponible en hucatolica.metabiblioteca.org
- Ricardo arguello, Horacio berreta, Rosana gaggino. Content-uploads.2007,
- Bloqueplás Por Ecoplasso. www.casadeplastico.org
- Ministerio de obras públicas www.mopc.gob.do
CAPITULO V. ANEXOS

DISEÑO DE UNA CASA DE MUROS DE PLASTICOS RECICLADOS
1. **9 Consejos para Reducir el Consumo de Plástico**

El Plástico es uno de los contaminantes más comunes, en la tierra y los océanos. Es necesario encontrar formas de reducir o eliminar su consumo.

Tip 1: Utiliza vasos de vidrio.
Tip 2: Utiliza cantimploras metálicas, el agua embotellada genera basura y es cara.
Tip 3: Utiliza cubiertos de metal o de madera.
Tip 4: Compra juguetes de madera, haz tus propios juguetes reutilizando cartón o plásticos.
Tip 5: Utiliza platos de verdad, vidrio, madera metal cerámica y con los utensilios de la cocina también.
Tip 6: Guarda los frascos para utilizarios como sustitutos de los tupperware.
Tip 7: Usa bolsas de tela o reja para la compra, dile no a las bolsas plásticas.
Tip 8: Haz compost con desechos orgánicos ahorras bolsas y tus plantas se verán hermosas.
Tip 9: Elige los productos que vengan en vidrio, siempre que puedas. Cuida con las bolsas de plástico en su interior.

Fuente. (http://ecologiahoy.net, s.f.)

2. **CICLO INDUSTRIAL DEL PLÁSTICO**

Fuente. (ucatolica.metabolibro.org, 109383)
3. "Manual de Construcción con Botellas Desechables de Plástico"

Fuente: (www.galicia.asfes.org, 2016)

4. "Construir con Botellas"

Fuente: (www.galicia.asfes.org, 2016)
Muro de botellas

Fuente: (www.galicia.asfes.org, 2016)
7. **MURO DE BOTELLAS**

PASO 1
REllenar las botellas

LLENADO DE LAS BOTELLAS
En temporada seca, puede utilizarse arena, siempre que no esté demasiado húmeda. Si es más seca, evitar la arena más húmeda llevarán las botellas.

COMPACTADO
A medida que vamos llenando la botella de arena, vamos dándoles toques para que la mezcla se vaya compactando.

Fuente. (www.galicia.asfes.org, 2016)

8. **MURO DE BOTELLAS**

PASO 2
PREparación de la mezcla

PREPARACIÓN DE LA MEZCLA CON CEMENTO

4 ARENA + 4 ARENA + 1 CEMENTO
Se mezclan 4 partes de arena con 4 de arena por 1 cemento. Debe mezclarse bien.

Agua adicional
Vamos añadiendo agua a la mezcla de arena y cemento, diluyendo consistencia con la Buchanan.

Fuente. (www.galicia.asfes.org, 2016)
9. **MURO DE BOTELLAS**

PASO 3

CONSTRUCCIÓN

1. **COLOCACIÓN DE LAS BOTELLAS JUMBO**
 - Colocar las botellas TODAS en la misma dirección sobre una buena capa de malla y asentarlo bien, para nivelarlo.
 - Cenar una cuerda hasta el final del muro para mantener el nivel.

2. **AÑADIR LA MECIA**
 - Vamos cubriéndolo bien los espacios entre los ladrillos.
 - La mezcla de cemento debe cubrir bien las botellas para dotarlas de dicho ladrillo.

3. **ATADO CON CUERDA DE PISA**
 - Cada dos ladrillos, se debe atar con plástico una o dos veces.
 - Se da una vuelta en torno al tapón y se sube a la 2ª, se da nuevamente otra vuelta al tapón y se baja a la primera.

Algunas recomendaciones:
- Para garantizar un buen funcionamiento, deben disponerse columnas de muros para soportar la botellaculata. Si está en el suelo, la masa no será necesaria.
- No ha de tener más de 4 láminas de botellas, el muro solo puede resistir su peso. No está pensado para muros muy altos.
- Es importante no olvidar sellar bien los hilos, para que trabajen juntas las botellas.

10. **MURO DE BOTELLAS**

PASO 4

REPELLER MURO

4. **REPUE DEL MURO**
 - Se utilizará la misma mezcla de cemento y arena 4:1.
 - Se debe ser poco espeso para mejorar el agarrado a la malla.
 - Se da una primera mano y se deja que vaya secando y rehundiendo.

 - Puñetitos usare otra mezcla: 1 cemento : 4 arena

 - 1 cemento : 4 barro

5. **SEGUNDA MANO**
 - Se aplica una segunda mano, cubriendo bien las bordas.
 - Dejar secar.

6. **ACABADO FINAL**
 - Se puede dar una última mano con un mortero de 1:5 arena

 ACABADO DE LISOCEPTE
 - 1 cemento : 4 barro
 - Fredal cronico, o dejar el espolio bien acabado.

Fuente. (www.galicia.asfes.org, 2016)
11.

Fuente. (www.galicia.asfes.org, 2016)

12.

Fuente. (www.galicia.asfes.org, 2016)
Fuente. (www.galicia.asfes.org, 2016)
15.

Fuente. (www.galicia.asfes.org, 2016)

16.

Fuente. (www.galicia.asfes.org, 2016)
17.

PANEL DE ECOLADRILLOS

PASO 4
CERRAR PANEL

6° ATADO DE LAS DOS MALLAS
Es importante atarlas con estambre con los orificios de las mallas que vamos sujentando en el panel.

6° CERRAR LA MALLA
Se termina de colocar la malla y se llena con clavos.

Fuente. (www.galicia.asfes.org, 2016)

18.

PROYECTO DE RECICLAJE DE MATERIAL PLÁSTICO DE DESECHO PARA SU APROVECHAMIENTO EN SISTEMAS CONSTRUCTIVOS EN USOS COMUNITARIOS
Departamento de Retalhue, Guatemala 2011

Elaborado por:
Financiado por:

Arquitectos Sen Fronteiras
UNIVERSIDAD DE CORUÑA

Fuente. (www.galicia.asfes.org, 2016)
Procesos de construcción de sistema de muros plásticos.

1.

Figura (1)
Fuente. (ucatolica.metabiblioteca.org, 109383)

2.

Figura (2)
Fuente. (ucatolica.metabiblioteca.org, 109383)

3.

Figura (3)
Fuente. (ucatolica.metabiblioteca.org, 109383)