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Tracking immune 
correlates of protection 
foremerging SARS- 
CoV-2 variants
Reliable SARS-CoV-2 correlates 
of protection (COP) are crucial for

predicting individual-level risk of 
infection, estimating population 
susceptibility, and assessing future 
epidemic risks.1 However, COP studies 
are challenging given that blood 
samples ideally need to be collected 
close to the time of exposure, which 
is hard to predict. Thus, most existing 
SARS-CoV-2 COP estimates are based 
on vaccine efficacy trial data,23 which 
include frequent blood sampling and 
strict infection monitoring and are 
therefore well suited for this purpose. 
Yet these trials were conducted before 
the circulation of highly immune- 
evasive variants of concern (VOC), 
and in populations with little previous 
exposure to SARS-CoV-2, limiting 
their current relevance. We previously 
reported how existing acute fever 
surveillance platforms could be used 
to monitor population-level temporal

changes in SARS-CoV-2 immune 
markers, and documented that higher 
antibody levels were associated with 
lower risk of SARS-CoV-2 infection.4 
Here, we build off that previous work 
to show that routinely collected fever 
surveillance data analysed using a 
prospective test-negative design5 
can generate rapid and VOC-specific 
immune COP for symptomatic 
infection.

As previously described,4 between 
March 22, 2021, and Aug 17, 2022, we 
prospectively enrolled 2300 patients 
aged 2 years and older who presented 
with undifferentiated acute febrile 
syndromes across two hospitals in the 
Dominican Republic. Nasopharyngeal 
swabs and sera collected at the time 
of enrolment were tested by real-time 
PCR (rtPCR) for acute SARS-CoV-2 
infection and with the Elecsys platform
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Figure: Correlates of protection for symptomatic SARS-CoV-2 infection by variants of concern
The plots show binomial generalised additive model covariate adjusted relative risk for real-time PCR (rtPCR) positive test by antibody marker level and stratified by 
variant of concern. (A) Relative risk of infection scaledto a reference value of 0-79 BAU/mL (manufacturer-defined positive cutoff index of 0-80 BAU/mL).The blue 
line indicates the regression point estimate with gray shading representing the 95% CL The horizontal black dashed line indicates 0-25 relative risk and vertical black 
arrow the total anti-spike value at the 0-25 relative risk intercept, corresponding to an estimated 75% protection against the respective variant To control for variable 

risk of pathogen exposure across the study population, covariates that are or might be associated with exposure were included in the model, including age, sex, 
month of sample collection, number of COVID-19 vaccine doses, days since last vaccine dose, urban versus rural setting, study site, and number of household 

residents. Given the non-linear relationship between log transformed antibody titre and risk of infection, the antibody titre covariate was modelled using two degrees 
of freedom. Case samples used in the models were all collected <5 days after symptom onset and were sequence-confirmed except BA.l, which includes all rtPCR- 

positive cases during the clearly delineated phase of BA.l transmission.The number of rtPCR-positive/negative study participants per plot are 42/394 (mu), 
84/474 (delta), 54/423 (BA.l), 17/288 (BA.2), and 19/288 (BA.4/5)- (B) Plots represent the same generalised additive models, but risk of infection is referenced to a 

total anti-spike antibody titre of 500 BAU/mL. Unadjusted anti-spike antibody levels by rtPCR result and variant are shown in the appendix (p 3)- BAU=binding 
antibody units.
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For estimates underlying the 

figure plots see https://github.

com/enilles1/SCV2.COP.V2.git
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for total anti-spike antibodies (Roche 
Diagnostics, Indianapolis, IN, USA), 
respectively. Of 517 rtPCR-positive 
samples (22·4% of all samples), 
264 with cycle threshold values less 
than 25 were randomly selected for 
sequencing using Oxford Nanopore 
or Illumina platforms. Using a test­
negative design that compared 
antibody levels between VOC 
sequence-confirmed cases and rtPCR- 
negative non-cases, we modelled 
the variant-specific risk of infection 
by total anti-spike antibody level, 
controlling for a range of covariates 
associated or potentially associated 
with SARS-CoV-2 exposure (figure). 
Additional methods are available 
in the appendix (pp 1–2). Estimates 
underlying the figure plots are 
available online.

Total anti-spike antibody estimates 
of 17 (95% CI 4–102), 76 (13–955), 
631 (6–60 256), 603 (5–24 547), and 
1148 (34–20 893) binding antibody 
units (BAU)/mL were associated with 
75% protection against symptomatic 
infection with B.1.621 (mu), B.1.617.1 
(delta), BA.1 (omicron), BA.2, 
and BA.4/5 variants, respectively 
(figure A), with details including 
estimates for 50%, 60%, 70%, and 
80% protection in the appendix 
(p 3). In addition to estimating the 
antibody level that corresponds to 
a specified level of protection, this 
approach can estimate variant­
specific protection that corresponds 
to specific antibody levels. For 
example, a cutoff of 100 BAU/mL (ie, 
the anti-spike antibody level reported 
through the prospective serology­
based Coronavirus Infection Survey 
that tracks population immune 
markers in the UK6) is estimated to 
provide 93% (95% CI 75–98), 77% 
(46–90), 52% (0–96), 37% (0–97), 
and 0% (0–85) protection against 
symptomatic infection for mu, delta, 
BA.1, BA.2, and BA.4/5 variants, 
respectively. Additionally, by adjusting 
the reference antibody value, we can 
estimate the risk of infection relative 
to a particular immune marker level,

for example a median population 
immune marker value in a specific 
country or region, as illustrated for 
a reference level of 500 BAU/mL 
(figure B).

Here we report a proof of concept 
for monitoring variant-specific SARS- 
CoV-2 COP using existing surveillance 
infrastructure in the Dominican 
Republic. However, global networks 
of acute febrile illness, influenza-like 
illness, and severe acute respiratory 
illness surveillance sites exist, which 
could be leveraged to more rapidly 
and precisely assess emerging 
COP. By combining analyses across 
international surveillance platforms, 
this approach could provide quick and 
operationally relevant data to assess 
population infection risk and guide 
public health policies for SARS-CoV-2 
and, potentially, other emerging 
pathogens.
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National case series of 
group A streptococcus 
pleural empyema in 
children: clinical and 
microbiological features

In the autumn of 2022, clinicians 
working at the Royal Hospital for 
Children, Glasgow, UK, observed an 
unusually high number of admissions 
for paediatric pleural empyema. 
We questioned whether this high 
number of admissions was occurring 
nationally, and, in this preliminary 
report, we present the clinical, 
epidemiological, and microbiological 
characteristics of these cases. Using 
routine clinical records, microbiology 
laboratory reports, procedure lists 
for chest drain insertion, and a list 
of hospital admissions provided by 
Public Health Scotland, we identified 
community acquired pleural empyema 
cases requiring chest drain insertion 
from Jan 1 to Dec 27, 2022, at the
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