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Abstract The dynamics of tumor growth is a very complex process, generally 
accompanied by numerous chromosomal aberrations that determine its genetic 
and dynamical heterogeneity. Consequently, the tumor interface exhibits a non­
regular and heterogeneous behavior often described by a single fractal dimension, 
A more suitable approach is to consider the tumor interface as a multifractal object 
that can be described by a set of generalized fractal dimensions. In the present 
work, detrended fluctuation and multifractal analysis are used to characterize the 
complexity of glioblastoma.
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25.1 Introduction

Multifractal and detrended fluctuation analysis has been used for the evaluation 
of the texture in medical image analysis [1-3], In particular, it has been used for 
brain tumor classification and grading [4-7], brain ttimor segmentation through 
the characterization of image texttire [8-14], and as a radiomic feature [15­
20], Fractal dimension has been used as a prime feature associated with image 
intensity to detect and classify brain tumors [21, 22], characterize brain tumor 
microvascularity [23, 24] and in loT developments [25], In all of the previously 
mentioned approaches, the derived fractal quantities give information on the bulk 
ttimor growth dynamics and heterogeneity, A different approach to sttidying the
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dynamics of tumor growth comes from the fractal and scaling analysis of the tumor 
interface as originally proposed by Bni et al. [26-29] in vinv and m vivo tumor 
samples. Application of fractal and scaling analysis to the tumor interface for in 
vivo contrast-enhanced Fi weighted MRI of brain tumors was first done by Martin­
Landrove and Pereira [30]. The analysis was further extended to three-dimensional 
contrast-enhanced Ti-weighted MRI of brain images [31-33]. In this chapter, a 
general approach based on multifractal and detrended fluctuations analysis is used 
to characterize fluctuations of quantities supported on the tumor interface, such as 
the radius, interface width, and contrast-enhanced image intensity.

25.2 Image Selection and Segmentation

Images for glioblastoma were extracted from collections in The Cancer Imaging 
Archive [34. 35], the TCGA-GBM collection [36] and from the RSNA-ASNR- 
MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021 [37-39], which 
includes a classification according to O(6)-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation [40, 41], Among these collections, Ti-weighted 
images, either contrast-enhanced or not, were selected and further review'ed. Tumor 
lesions selected for image processing were identified as such and separated from 
anatomical structures.

Images were segmented according to a dynamical quantum clustering algorithm 
[42, 43] applied to medical image data ¡44 46],

25.3 Multifractal Analysis

To determine the multifractal scaling exponents for the one-dimensional ordered 
series extracted from the tumor interface, as seen in Fig, 25,1, a general procedure 
of fluctuation analysis is used [47, 48], In the following, the method is derived for 
the ordered series conesponding to the radii of the interface points hut it can he

Fig, 25,1 (a) Tumor 
interface point cloud as 
extracted by the segmentation 
method previously described; 
white interface points 
correspond to a particular 
slice, (bj Construction of the 
ordered series from points 
extracted from the tumor 
interface, in this case, the 
radius R^ip)
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Fig. 25.2 Some examples of extracted ordered series, (aj Tumor interface point cloud correspond­
ing to a slice, (bj Ordered series of the fluctuations of the radii of the tumor interface and tc) the 
cumulative sum of the ordered series

easily extended to any variable associated with these points such as the average 
interface width or its contrast-enhanced intensity. First, the profile of the ordered 
series is determined by a cumulative sum,

/lf(i)=V(f, ir4 
t=i

(■25.1)

where (r) represents the mean radius of the tumor interface (see Fig, 25.2), The 
profile series is then partitioned into N( = iuf (A'/'^l segments of equal length i, the 
box probability P({v), which is the sum of the values r^ within each segment v of 
size ,i, is defined as

Pi(w) = /?(vj) - R{(v - l)i) (25,21

The scaling properties and exponents can be obtained through the partition 
function

2^U I = ^ I fl, 11') I'' 
V_|

(25.31
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Fig. 25.3 Different steps in multifiactal analysis for one-dimensional ordered series extracted 
from the tumor interface, fa) Partition functions Z,y)i). fb) Large scale exponents T]ti/J. fc) 
Generalized fractal dimensions, D] {q). and (dj Singularity spectrum f] (o')

For large values of v, a power law behavior is obtained for Z^(s) (Fig. 25.3a). 
allowing for a definition of the scaling exponent nf^) that characterizes the one­
dimensional fluctnations,

Z^jlii (25.4)

as seen in Fig. 25.3b.
The generalized fractal dimensions (Fig. 25.3c) are then defined as

/-,..= ^ (25,5)

and the generalized one-dimensional Hurst exponents can he obtained from the 
relation

xx{q} = qhx(q} - \ (25.6)

A complementary way to characterize the multi frac tai tumor interface is by 
detennining the singularity spectrum A (ai) (Fig. 25.3d). which is related to ri (q)
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Fig. 25.4 Two-dimensional arrays from the tumor interface, fa) Radii extracted from the tumor 
interface point cloud, l b) Fluctuations of the radii for a fixed scale and fe) contrast-enhanced image 
intensity at the tumor interface

by a Legendre transform

/i(ofi) ^ ««1 - ri(t/) (25,71

The ordered series that can be extracted from any slice represents a one- 
dimensiona! sampling of the tumor interface and as a consequence an incomplete 
picture of the tumor interface fluctuations. A more general approach is possible if 
a two-dimensional detrended fluctuation analysis [49] is performed. In this case, 
the tumor interface is parameterized as a two-dimensional array with elements 
r(H0. itz}~ the radii of the tumor interface, or any other quantity associated with 
it, as shown in Fig. 25.4, and is partitioned in two-dimensional segments of size .v.

The detrended fluctuation function in each segment is given by

f-(v. W.5) = ^^c^„.(i.7)

' / = ! ) = 1
(25.8)

where ?[,«;((.,/) is the difference between the cumulative sum of r(i, ;) and its 
trend over the segment (v, w1. The average of the detrended fluctuation over all the 
segments is

(25,91

for g s¿ 0 and for g = 0,

Fcfis) = exp
1

M,N,

Ms Ns
ln[F(u, w. j)]

11 = 1 Ut=l

(25.101
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Fig. 25.5 Different steps in detrended fluctuation analysis for two-dimensional anays extracted 
from the tumor interface, (aj Detrended fluctuation functions f^fij. fb) Large scale exponents 
T;(i/). fc) Generalized fractal dimensions. D^ii/). and (d) Singularity spectrum fitoi)

For large values of v, F^ behaves as a power law.

f;iJtl -- .t^-*'T' (25,111

The multifractal nature of the fluctuation is characterized by the scaling expo­
nents rzf^) and related to the generalized two-dimensional Hurst exponents (izf^l 
by

T2(i) — ?^2(il - 2 (25,121

and Eq, 25,5 holds for the generalized fractal dimensions D^^g). In a similar way, as 
in Eq, 25,7, the singularity spectrum f2(<X2} can he determined. The general scheme 
is presented in Fig, 25,5,
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25.4 Results and Discussion

25.4.1 Multi/ractal Analysis of One-Dimensional Ordered
Series

The results conesponding to the multifractal analysis of the one-dimensional 
ordered series are summarized in Table 25.1 showing the average value of the 
information dimension ûi(l), the correlation dimension i)i(2). and the Hurst 
exponent, hi(2}.

Also from Table 25.1, the generalized fractal dimension i)i(O), which corre­
sponds to the Euclidean dimension, is very close to 1, as it should be since the 
ordered series is one-dimensional. Comparison of the values for Di(l ), Di(2), and 
h 1(2) among the MGMTp(O) I un methylated) and MGMTp(l) (methylated) groups 
yields to the result that both groups are very similar in these quantities, with an 
increase in favor of the MGMTp(O) group. Also, the Gbm group, which belongs to 
the TCGA-GBM collection, exhibits results that are very close to the other groups, 
possibly because this group represents an unknown mixture of unmethylated and 
methylated MGMT promoters. The general behavior can be seen in Fig, 25.6,

Table 25,1 Generalized fractal dimensions i) and Hurst exponent, /iit?) for the one­
dimensional ordered series of the radii extracted from the tumor interface

Data set Pl (01 Dill) Pl (21 AI (2)
MOMTpibr 1.1)37 ±0.002 0.90 ± 0.05 0.76 ±0.11 0.88 ± 0.05
MOMTpflr 1.036 ±0.002 0.89 ±0.06 0.73 ±0.12 0.86 ±0.06
Gbrn*^ 1.037 ±0.002 0.88 ± 0.05 0.73 ±0.10 0.87 ± 0.05

’ RSNA-AS5JR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021. fOj Unmethylated 
MGMT promoter, fl) methylated MGMT promoter
The Cancer Imaging Archive TCGA-GBM collection

Fig. 25.6 Generalized fractal 
dimensions Di [q). associated 
with one-dimensional ordered 
series for data sets of 
glioblastoma and high-grade 
gliomas
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25.4.2 Detrended Fluctuation Analysis of Two-Dimensional 
Tumor Interface Data

Different data were extracted from the tumor interface; the set of radii of the 
interface points, /f, the set of the interface points fluctuations for a fixed scale, that 
is, a width evaluated on each interface point, W, and the set of contrast-enhanced 
image intensities evaluated at each interface point, !. The results for the average 
value of Z)^( 1), ¿>2(2), and h2(,2'i are summarized in Table 25,2. Notice in general 
that all the quantities decrease as the data set is changed from /i * W * 1 and an 
increase in favor of the methylated group MGMTpt 1) for all the data sets.

The relationship between the generalized fractal dimensions is shown in 
Fig. 25.7.

25.4.3 Generalized Hurst Exponents and Singularity Spectra

A complementary view of the multifractal nature of the tumor interface can 
be obtained by the evaluation of the generalized Hurst exponents h{g'} and the 
singularity spectrum Z(a). In Tables 25,1 and 25,2, the quantity known as the 
Hurst exponent, that is, h (21 is evaluated, indicating how' correlated the fluctuations 
in the tumor interface are, but as seen in Fig, 25,8, the dependence on q of the 
generalized Hurst exponents is more pronounced for ¡7 <0 (more sensitive 
to small fluctuations). This behavior is observed both for the multifractal one­
dimensional analysis and for the two-dimensional detrended fluctuation analysis 
with the possibility to discriminate between the glioblastoma groups.

Table 25.2 Generalized 
fractal dimensions D2 and 
Hurst exponent, /i2(2) for 
two-dimensional arrays 
extracted from the tumor 
interface. R interface radius. 
W interface width, I contrast 
image intensity at the 
interface

Data set P2U) .">3: Al 12)
R MGMTp lOr 1.91 ±0.1S 1.82±0.35 1.92 ±0.17
W MGMTp (0)’ 1.87 ±0.21 1.73 ±0.43 1.87 ±0.21
I MGMTp 1 Or 1.84 ±0,34 1.69 ±0.48 1.84 ±0.34
R MGMTp ill“ 1.95 ±0.17 1.90 ±0.34 1.95 ±0.17
W MGMTp (H* 1.9Ü±0.17 1.80 ±0.35 1.90 ±0.17
I MGMTp fir 1.88 ±0.18 1.75 ±0.36 1.88 ±0.18
R Gbm*’ 1.93 ±0.15 1.87 ±0.30 1.93 ±0.15
W Gbrn*^ 1.88 ± 0.14 1.76 ±0.28 1.88 ±0.14
I (¡bill ' 1.86 ±0.13 1.72 ±0.26 l.S6±0.13

’ RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) 
Challenge 3021. tO) Unmethylated MGMT promoter, fl) 
methylated MGMT promoter
The Cancer Imaging Archive TCGA-GBM collection
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(a) (b)

Fig. 25.7 (a) Generalized fractal dimensions D2i.ii). associated with two-dimensional data arrays 
extracted from the tumor interface and coiresponduig to the width of the interface at a certain 
scale, IT. and the contrast-enhanced image intensity, /.; fOj corresponds to unmetliylated MGMT 
promoter and (If to methylated MGMT promoter, th) Relationship between the correlation 
dimensions Dii)2), Dw[2) and Di)2) with MGMTptO) in square symbols and MGMTptl) in 
circles

Fig. 25.8 Generalized Hurst exponents. l7[ii). (aj Results obtained by multifractal analysis applied 
upon one-dimensional ordered series extracted from the tumor interface, fb) Results obtained by 
two-dimensional detrended fluctuation analysis applied upon two-dimensional arrays of interface 
data; I corresponds to contrast-enhanced image intensity while W is the width of the tumor 
interface at a fixed scale. (0) conesponds to unmethylated MGMT promoter, tl) to methylated 
MGMT promoter

Figure 25.9 shows the corresponding singularity spectra obtained by multifrac­
tal analysis on one-dimensional ordered series. Fig. 25,9a and two-dimensional 
detrended fluctuation analysis. Fig, 25.9b.



496 J. Sanchez and M. Marl in-I,and rove

Fig. 25.9 Singularity spectrum /(ui). fa) Results obtained by multifractal analysis applied upon 
one-dimensional ordered series of the radii extracted from the tumor interface, fb) Results obtained 
by two-dimensional detrended fluctuation analysis applied upon the two-dimensional array of the 
radii extracted from the tumor interface. (0) corresponds to unme thy la ted MGMT promoter, f 1 j to 
methylated MGMT promoter

25.5 Conclusions

Mtiltifractal and detrended fltictnation analysis are powerful tools to characterize 
the heterogeneity and complexity of the tumor interface. The determination of 
generalized fractal dimensions, generalized Hurst exponents, and related quantities 
such as singularity spectra besides the commonly used fractal dimension could 
greatly improve the description of the tumor growth dynamics. From a practical 
point of view, these quantities add up to the standard set of radiomic features 
that can be used as discriminators or image biomarkers for tumor detection and 
classification.
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